To determine the prevalence of evidence of residual obstetric anal sphincter injury, to evaluate its association with anal incontinence (AI) and to establish minimal diagnostic criteria for significant (residual) external anal sphincter (EAS) trauma.
BACKGROUND: Dengue is a mosquito-borne disease that causes a public health problem in tropical and subtropical countries. Current immunological diagnostics based on IgM and/or nonstructural protein 1 (NS1) antigen are limited for acute dengue infection due to low sensitivity and accuracy.
OBJECTIVES: This study aimed to develop a one-step multiplex real-time RT-PCR assay showing higher sensitivity and accuracy than previous approaches.
STUDY DESIGN: Serotype-specific primers and probes were designed through the multiple alignment of NS1 gene. The linearity and limit of detection (LOD) of the assay were determined. The assay was clinically validated with an evaluation panel that was immunologically tested by WHO and Malaysian specimens.
RESULTS: The LOD of the assay was 3.0 log10 RNA copies for DENV-1, 2.0 for DENV-3, and 1.0 for DENV-2 and DENV-4. The assay showed 95.2% sensitivity (20/21) in an evaluation panel, whereas NS1 antigen- and anti-dengue IgM-based immunological assays exhibited 0% and 23.8-47.6% sensitivities, respectively. The assay showed 100% sensitivity both in NS1 antigen- and anti-dengue IgM-positive Malaysian specimens (26/26). The assay provided the information of viral loads and serotype with discrimination of heterotypic mixed infection.
CONCLUSIONS: The assay could be clinically applied to early dengue diagnosis, especially during the first 5 days of illness and approximately 14 days after infection showing an anti-dengue IgM-positive response.
MeSH terms: Dengue/diagnosis*; Humans; Sensitivity and Specificity; Serologic Tests; Viral Nonstructural Proteins/genetics*; Viral Load; Reverse Transcriptase Polymerase Chain Reaction/methods*; Early Diagnosis; Limit of Detection; Multiplex Polymerase Chain Reaction/methods*
Aeromonas hydrophila has emerged worldwide as a human pathogen. Here, we report the draft whole-genome sequence of a freshwater isolate from Malaysia, A. hydrophila strain M062, and its N-acylhomoserine lactone genes are also reported here.
Melioidosis is an important cause of community-acquired infection in Southeast Asia and northern Australia. Studies from endemic countries have demonstrated differences in the epidemiology and clinical features among children diagnosed with melioidosis. This suggests that local data are needed to determine the risk factors and outcome in specific areas.
The purpose of this study was to establish a relation between the crest of alveolar ridge and functionally obtained neutral zone and to determine the effect of duration of edentulousness on the location of neutral zone in relation to the crest of residual alveolar ridge.
To retrospectively determine the extent and types of adverse drug events (ADEs) from the patient cases sheets and identify the contributing factors of medication errors. To assess causality and severity using the World Health Organization (WHO) probability scale and Hartwig's scale, respectively.
Girinimbine is a carbazole alkaloid isolated from the stem bark and root of Murraya koenigii. Here we report that girinimbine is an inhibitor of angiogenic activity both in vitro and in vivo. MTT results showed that girinimbine inhibited proliferation of human umbilical vein endothelial cells, while results from endothelial cell invasion, migration, tube formation, and wound healing assays demonstrated significant time- and dose-dependent inhibition by girinimbine. A proteome profiler array done on girinimbine-treated human umbilical vein endothelial cells showed that girinimbine had mediated regulation of pro-angiogenic and anti-angiogenic proteins. The anti-angiogenic potential of girinimbine was also evidenced in vivo in the zebrafish embryo model wherein girinimbine inhibited neo vessel formation in zebrafish embryos following 24 hours of exposure. Together, these results showed that girinimbine could effectively suppress angiogenesis, suggestive of its therapeutic potential as a novel angiogenesis inhibitor.
Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
The prevalence of type 2 diabetes is increasing in Malaysia, with most patients poorly controlled. Hence, this study aimed to determine nutritional and metabolic status as well as blood pressure of Malaysian patients with type 2 diabetes mellitus and identify associated risk factors for poor glycemic control.
Objective. To investigate the potential effect of Hydrocotyle sibthorpioides Lam. (H. sibthorpioides) extracts against in vitro dengue viral replication. Methods. The cytotoxicity of H. sibthorpioides was evaluated using a cell viability assay. Cells were pre- and posttreated with water and methanol extracts of H. sibthorpioides, and the viral inhibitory effect was investigated by observing the morphological changes, which were further confirmed by plaque assay. Results. The methanolic extract cytotoxicity was higher in Vero and C6/36 cells than the cytotoxicity of the water extract. Preincubation of the cells with H. sibthorpioides extract showed nonexistent to mild prophylactic effects. The posttreatment of Vero cells with H. sibthorpioides methanolic extract presented higher antidengue activities when compared with the water extract. Surprisingly, posttreatment of C6/36 cells resulted in an enhancement of viral replication. Conclusion. H. sibthorpioides had variable effects on dengue viral replication, depending on the treatment, cell lines, and solvent types. This study provides important novel insights on the phytomedicinal properties of H. sibthorpioides extracts on dengue virus.
Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.
Healthcare costs continue to rise every day as the demand outgrows the supply of surgeons. The application of telephone consultation for immediate management is needed as most neurosurgeons are technology orientated. This enables a specialist at a remote mobile site to receive the necessary information and reduce transmission time, from the second the patient is seen till the management is obtained.
MeSH terms: Neurosurgeons; Humans; Referral and Consultation; Specialization; Telephone; Health Care Costs; Surgeons
Full recovery from tetraplegia is uncommon in cervical spine injury. This has not being reported for cervical spine fracture in a patient with ankylosing spondylitis causing spinal epidural hematoma. We report on a case of cervical spine fracture in a patient with ankylosing spondylitis who came with tetraplegia. He underwent a two stage fixation and fusion. He had a complete recovery. Two hours after the operation he regained full strength in all the limbs while in the Intensive Care Unit. He went back to full employment. There are only two other reports in the literature where patients with ankylosing spondylitis and extradural hematoma who underwent treatment within 12 h and recovered completely from tetraparesis and paraplegia respectively. Patient with ankylosing spondylitis has a higher incidence of spinal fracture and extradural hematoma. Good outcome can be achieved by early diagnosis and treatment. This can ensure not only a stable spine, but also a rapid and complete recovery in a tetraplegic patient.
Barbiturate coma therapy (BCT) is a choice treatment for refractory intracranial hypertension after all surgical or medical managements have failed to control the intracranial pressure (ICP). It helps to reduce cerebral blood flow, cerebral metabolic rate of oxygen consumption and ICP. However, this therapy can also cause many complications. One of the underreported, but life-threatening complications is refractory hypokalemia, which can lead to subsequent rebound hyperkalemia after sudden cessation. We report our experience of managing unusual complication of refractory hypokalemia during BCT with thiopentone in postdecompressive craniectomy patient.
Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms' formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to identify biofilms.
The structure of 3-iodobenzaldehyde (3IB) was characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of 3IB were examined using density functional theory (DFT) method, with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set for all atoms except for iodine. The LANL2DZ effective core basis set was used for iodine. Potential energy distribution (PED) analysis of normal modes was performed to identify characteristic frequencies. 3IB crystallizes in monoclinic space group P21/c with the O-trans form. There is a good agreement between the theoretically predicted structural parameters, and vibrational frequencies and those obtained experimentally. In order to understand halogen effect, 3-halogenobenzaldehyde [XC6H4CHO; X=F, Cl and Br] was also studied theoretically. The free energy difference between the isomers is small but the rotational barrier is about 8kcal/mol. An atypical behavior of fluorine affecting conformational preference is observed.
A series of novel aurones bearing amine and carbamate functionalities at various positions (rings A and/or B) of the scaffold was synthesized and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activities. Structure-activity relationship study disclosed several potent submicromolar acetylcholinesterase inhibitors (AChEIs) particularly aurones bearing piperidine and pyrrolidine moieties at ring A or ring B. Bulky groups particularly methoxyls, and carbamate to a lesser extent, at either rings were also prominently featured in these AChEI aurones as exemplified by the trimethoxyaurone 4-3. The active aurones exhibited a lower butyrylcholinesterase inhibition. A 3'-chloroaurone 6-3 originally designed to improve the metabolic stability of the scaffold was the most potent of the series. Molecular docking simulations showed these AChEI aurones to adopt favourable binding modes within the active site gorge of the Torpedo californica AChE (TcAChE) including an unusual chlorine-π interaction by the chlorine of 6-3 to establish additional bondings to hydrophobic residues of TcAChE. Evaluation of the potent aurones for their blood-brain barrier (BBB) permeability and metabolic stability using PAMPA-BBB assay and in vitro rat liver microsomes (RLM) identified 4-3 as an aurone with an optimal combination of high passive BBB permeability and moderate CYP450 metabolic stability. LC-MS identification of a mono-hydroxylated metabolite found in the RLM incubation of 4-3 provided an impetus for further improvement of the compound. Thus, 4-3, discovered within this present series is a promising, drug-like lead for the development of the aurones as potential multipotent agents for Alzheimer's disease.
Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.
The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.
MeSH terms: Immunoglobulin D/genetics*; Immunoglobulin G/genetics*; Immunoglobulin Fab Fragments/genetics*; Immunoglobulin Fab Fragments/metabolism; Immunoglobulin Fab Fragments/chemistry; Models, Molecular; Plasmids/genetics*; Protein Conformation; Molecular Chaperones/metabolism*; Peptide Library*
Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.