Displaying publications 1 - 20 of 359 in total

Abstract:
Sort:
  1. Othman, M., Ahmad, K.
    ASM Science Journal, 2008;2(2):183-183.
    MyJurnal
    Comet Lulin was discovered by Lin Chi-Sheng and Ye Quanzhi using the 16-inch telescope at Lulin Observatory in Nantou, Taiwan in 2007. According to Brian Marsden of the Smithsonian Astrophysical Observatory, it reached its perihelion on 10 January 2009 at a distance of 113 million
    km from the Sun. It moves in a very nearly parabolic retrograde (‘backwards’ compared to the movement of the planets) orbit at an inclination of 1.6 degrees from the ecliptic (“Newfound Comet Lulin to Grace Night Skies”). http://www.space.com/spacewatch/090206-ns-cometlulin.html). It passed nearest to the Earth at a distance of 61 million km on 23 February 2009.
    Matched MeSH terms: Extraterrestrial Environment
  2. Abraham, Martin
    ASM Science Journal, 2012;6(1):67-70.
    MyJurnal
    The pursuit, initiation and establishment of multi-stakeholder partnerships, including with the private sector, is often a critical component of attaining and achieving the success and sustainability of many projects the world over. However, the soliciting and securing of socially, economically and environmentally constructive engagements between the private sector on the one hand, and the NGOs, CBOs and local communities on the other hand, is in reality much easier said than done. Notably, since most private sector corporations undoubtedly tend to leave behind various "ecological footprints", differing only in their size and depth, stemming from their respective forms and functions, and their ensuing impacts and implications. The interplay between the civil society and the private sector, especially for resource mobilization. (Copied from article).
    Matched MeSH terms: Environment
  3. Yahya, A., Sidek, O., Salleh, M.F.M.
    ASM Science Journal, 2010;4(1):48-54.
    MyJurnal
    Frequency hopping spread spectrum (FHSS) systems with partial band interference require appropriate compounding of spread spectrum modulation, error correcting code, diversity and decoding method to receive improved transmission signal. In this paper, a fast FHSS system with regular low-density parity-check codes was employed to cater some anti-jamming competence by using good waterfall and error floor performance. The performance evalution of the previously mentioned system was conducted in the presence of partial band noise jamming. The best possible design of the system was achieved with the combination of diversity level L=2 with a probability rate of at 0.7 dB which showed the robustness of the system.
    Matched MeSH terms: Environment
  4. Rahman, M.M., Nor, S.S.M., Rahman, H.Y.
    ASM Science Journal, 2011;5(1):11-18.
    MyJurnal
    Warm compaction is an advanced manufacturing technique which consists of two consecutive steps, i.e. powder compaction at above ambient temperature and sintering in a controlled environment. Due to the relative movement between the powder mass and die wall as well as sliding among powder particles, frictional force is generated during the compaction stage. Admixed lubricant is used during the compaction step in order to minimize friction and hence improve the uniformity of the density of distribution inside the component. However, during the sintering process, trapped lubricant is often found to be burnt out hence leaving pores or voids which result in the lower strength of the final products. Warm compaction was initiated in the nineties, however not much information has been published about the effects of lubrication on the quality of the components produced through this route. Therefore, this paper presents the outcome of an experimental investigation about the effects of lubrication on manufacturing near-net shape components through the warm compaction route. Iron powder ASC 100.29 was mixed mechanically with zinc stearate to prepare the feedstock. Mixing time, weight percentage of lubricant content and compaction temperature were varied during green compact generation while sintering temperature, heating rate and holding time were manipulated during sintering. The relative densities and strengths of the final products were investigated at every compaction as well as sintering parameter. The results revealed that lubrication could provide significant effects at the compaction temperature of 180ºC while no significant effect of lubrication was observed during sintering. The suitable lubricant content was found to be 0.4 wt% and mixing time was around 30 min and the sintering temperature was around 990ºC.
    Matched MeSH terms: Environment, Controlled
  5. C. Devendra
    ASM Science Journal, 2013;7(2):152-165.
    MyJurnal
    Systems perspectives are fundamental in driving technological improvements and yield-enhancing strategies that improve agricultural productivity. These can resolve farmerʼs problems and are important pathways for sustaining food and nutritional security for human welfare in Asia. The essential determinants of this objective are the capacity to efficiently manage the natural resource base (land, crops, animals, and water) to resolve constraints to farming systems, and notably the integration of multiple research and development (R&D) issues through all levels of formal and non-formal learning systems. Both formal and informal education systems are important, with the former relating more to universities and colleges, and the latter to the intermediate level. Graduates from this level have the primary responsibility of introducing improved technologies and change to farmers, mainly along production and disciplinary pathways.The traditional research–extension–farmer model for technology delivery is no longer acceptable, due to “top down” extension functions and prescriptions, ineffectiveness to cope with the dynamics of production systems, complex interactions within the natural resources, effects of climate change and globalisation. There are also reservations on the technical capacity and skills of extension agents, constraints identification, methods for technology diffusion and dissemination, and innovative use of beneficial technological improvements that can directly respond to the needs of small farmers, and impact on subsistence agriculture. Agricultural education and systems perspectives are therefore an overriding compelling necessity which transcends prevailing limitations to waning agriculture and rural growth. Their wider recognition and applications provides an important means to maximise efficiency in the potential use; of the natural resources, increase engagement and investments in agriculture, promote ways to become more self-reliant in the development of crucial new technologies and intensification. These together can meet the challenges of the future and overcome the legacy of continuing poverty, food and nutritional insecurity. Asian farming systems, with their diversity of crops and animals, traditional methods, multiple crop-animal interactions, numerous problems of farmers present increasingly complex issues of natural resource management (NRM) and the environment. Many if not all of these can only be resolved by interdisciplinary R&D, which overcomes a major weakness of many R&D programmes presently and in the past. Improved education and training is a powerful and important driver of community-based participation aimed at enhancing sustainable food security, poverty reduction and social equity in which the empowerment of women in activities that support organising themselves is also an important pathway to enhance self-reliance and their contribution to agriculture. A vision for the future in which improved agricultural education in a systems context can provide the pathway to directly benefit the revitalisation of agriculture and agricultural development is proposed with a three-pronged strategy as follows:
    Define policy for the development of appropriate curricular for formal agricultural education that provides strong multi-disciplinary orientation and improved understanding of the natural resources (land, crops, animals and water) and their interactions
    Organise formal degree education and specialisation at the university level that reflects strong training in understanding of agricultural systems; systems perspectives, methodologies and their application, and
    Define non-formal education and training needs that can be intensified at different levels, including the trainin of trainers as agents of change.
    Matched MeSH terms: Environment
  6. Ahmad, Z., Rohana, H., Md Tahir, P.
    ASM Science Journal, 2013;7(1):37-58.
    MyJurnal
    This study investigated the thermal properties of three room temperature curing adhesives containing nano particles which were thixotropic and shear thinning which allowed injection into overhead holes when exposed to different environmental conditions. Viscosity and shear stress of the adhesives were measured as a function of shear rate. The thermal behaviour of the adhesives were measured using dynamic mechanical thermal anylisis following exposures to different temperatures and humidities which included temperatures of 20 degrees Celcius, 30 degrees Celcius and 50 degrees Celcius, relative humidities of 65% RH, 75% RH 95% RH soaked in water at 20 degrees Celcius and placed in the oven at 50 degrees Celcius. The dynamic thermal properties reported include storage and loss modulus, the loss tangent and the glass transition temperature ( Tg ). For nano- and micro-particles filled adhesives, the Tg increased with the temperature increase, even though the adhesives was subjected to high humidity and this was due to further cross-linking. The results showed that room temperature cured epoxies were only partially cured at room temperature.
    Matched MeSH terms: Environment
  7. Devendra, C.
    ASM Science Journal, 2015;9(1):1-20.
    MyJurnal
    The natural environment embraces agriculture and all its components-crops, animals, land, water,
    forestry and fisheries. It is the most important user of environmental resources, made more complex
    by the interactions of the various systems, biophysical elements and their implications. Increased food
    production, especially of animal protein supplies are unable to meet current and projected future needs
    for humans, including about 15 %of the world population being malnourished. Agriculture is currently
    waning, and a coordinated and concerted technologically-driven transformation is necessary. Poorly
    managed agriculture for example, can lead to serious environmental degradation and exacerbate
    poverty. Land and water are considered to be the most limiting factors in the future. Non- irrigated
    rainfed areas can be divided into high potential and low potential areas; the former offers considerable
    promise to expand food production. This paper argues for increased Research and Development (R&D)
    focus that can maximise improved natural resource management(NRM), and whether agricultural
    development can maximise productivity yields .Other opportunities include expanding crop–animal
    production systems in less favoured areas (LFAs), intensifying land use for silvopastoral systems in
    rainfed areas , and enhance carbon sequestration. Ruminants can be used as an entry point for the
    development of LFAs, and the presence of about 41.5% of the goat population found in the semi-arid/
    arid AEZs X provides good opportunities for expanding food security and human well-being. Communitybased
    interdisciplinary and systems approaches are essential to provide the solutions. The legacy of
    continuing malnutrition and food insecurity must be overcome by effective development policy, multidonor
    resource allocation, governance and political will that target food insecurity and poverty. The R&D
    agendas and resource allocations are compelling, but dedicated vision can lead the way for sciencedriven
    sustainable environment, efficiency in NRM, and self-reliance to the extent possible , in harmony
    with nature and the environment.
    Matched MeSH terms: Environment
  8. Azrul Ghazali, Sivadass Thiruchelvam, Kamal Nasharuddin Mustapha, Ahmad Kamal Kadir, Fatin Faiqa Norkhairi, Nora Yahya, et al.
    ASM Science Journal, 2018;11(2):117-123.
    MyJurnal
    Series of catastrophic floods that we have witnessed over the last decade in Malaysia have necessitated the adoption of reliable early warning system. Ultimate concern during any event of natural or manmade disaster would be information dissemination to lessen the disaster impact on lives and property. The Bertam Valley incident in the wee hours of 23rd October 2013 has been considered as the game changer of how we view the role of vulnerable communities in facing dam-related disasters. Empowerment of local communities has been considered as vital in disaster management, as they are often the first responders to disaster. Local Community-Based Early Warning System (CBEWS) is a smart mechanism operated by the communities. This study revolves around the actual implementation of such system in Cameron Highlands in the effort of increasing human resilience towards damrelated disasters. While establishing the system, the Bertam Valley community has received support from different individuals and organisations. It is paramount that the community develops and maintains close coordination and strong links with these stakeholders. The performance of early warning systems can be evaluated via key parameters such as timeliness, accuracy, reliability, user friendliness, flexibility, and costs & benefits.
    Matched MeSH terms: Environment
  9. Tey LS, Zhu S, Ferreira L, Wallis G
    Accid Anal Prev, 2014 Oct;71:177-82.
    PMID: 24929822 DOI: 10.1016/j.aap.2014.05.014
    Level crossings are amongst the most complex of road safety issues, due to the addition of rail infrastructure, trains and train operations. The differences in the operational characteristics of different warning devices together with varying crossing, traffic or/and train characteristics, cause different driver behaviour at crossings. This paper compares driver behaviour towards two novel warning devices (rumble strips and in-vehicle audio warning) with two conventional warning devices (flashing light and stop sign) at railway level crossings using microsimulation modelling. Two safety performance indicators directly related to collision risks, violation and time-to-collision, were adopted. Results indicated the active systems were more effective at reducing likely collisions compared to passive devices. With the combined application of driving simulation and traffic microsimulation modelling, traffic safety performance indicators for a level crossing can be estimated. From these, relative safety comparisons for the different traffic devices are derived, or even for absolute safety evaluation with proper calibration from field investigations.
    Matched MeSH terms: Environment Design/statistics & numerical data*
  10. Abdul Manan MM
    Accid Anal Prev, 2014 Sep;70:301-13.
    PMID: 24831271 DOI: 10.1016/j.aap.2014.04.009
    This paper uses data from an observational study, conducted at access points in straight sections of primary roads in Malaysia in 2012, to investigate the effects of motorcyclists' behavior and road environment attributes on the occurrence of serious traffic conflicts involving motorcyclists entering primary roads via access points. In order to handle the unobserved heterogeneity in the small sample data size, this study applies mixed effects logistic regression with multilevel bootstrapping. Two statistically significant models (Model 2 and Model 3) are produced, with 2 levels of random effect parameters, i.e. motorcyclists' attributes and behavior at Level 1, and road environment attributes at Level 2. Among all the road environment attributes tested, the traffic volume and the speed limit are found to be statistically significant, only contributing to 26-29% of the variations affecting the traffic conflict outcome. The implication is that 71-74% of the unmeasured or undescribed attributes and behavior of motorcyclists still have an importance in predicting the outcome: a serious traffic conflict. As for the fixed effect parameters, both models show that the risk of motorcyclists being involved in a serious traffic conflict is 2-4 times more likely if they accept a shorter gap to a single approaching vehicle (time lag <4s) and in between two vehicles (time gap <4s) when entering the primary road from the access point. A road environment factor, such as a narrow lane (seen in Model 2), and a behavioral factor, such as stopping at the stop line (seen in Model 3), also influence the occurrence of a serious traffic conflict compared to those entering into a wider lane road and without stopping at the stop line, respectively. A discussion of the possible reasons for this seemingly strange result, including a recommendation for further research, concludes the paper.
    Matched MeSH terms: Environment Design*
  11. Hosseinpour M, Yahaya AS, Sadullah AF
    Accid Anal Prev, 2014 Jan;62:209-22.
    PMID: 24172088 DOI: 10.1016/j.aap.2013.10.001
    Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes.
    Matched MeSH terms: Environment Design/statistics & numerical data*
  12. Soltani M, Moghaddam TB, Karim MR, Sulong NH
    Accid Anal Prev, 2013 Oct;59:240-52.
    PMID: 23820073 DOI: 10.1016/j.aap.2013.05.029
    Road safety barriers protect vehicles from roadside hazards by redirecting errant vehicles in a safe manner as well as providing high levels of safety during and after impact. This paper focused on transition safety barrier systems which were located at the point of attachment between a bridge and roadside barriers. The aim of this study was to provide an overview of the behavior of transition systems located at upstream bridge rail with different designs and performance levels. Design factors such as occupant risk and vehicle trajectory for different systems were collected and compared. To achieve this aim a comprehensive database was developed using previous studies. The comparison showed that Test 3-21, which is conducted by impacting a pickup truck with speed of 100 km/h and angle of 25° to transition system, was the most severe test. Occupant impact velocity and ridedown acceleration for heavy vehicles were lower than the amounts for passenger cars and pickup trucks, and in most cases higher occupant lateral impact ridedown acceleration was observed on vehicles subjected to higher levels of damage. The best transition system was selected to give optimum performance which reduced occupant risk factors using the similar crashes in accordance with Test 3-21.
    Matched MeSH terms: Environment Design/standards*
  13. Law TH, Ghanbari M, Hamid H, Abdul-Halin A, Ng CP
    Accid Anal Prev, 2016 Nov;96:64-70.
    PMID: 27505097 DOI: 10.1016/j.aap.2016.04.013
    Motorcyclists are particularly vulnerable to injury in crashes with heavy vehicles due to substantial differences in vehicle mass, the degree of protection and speed. There is a considerable difference in height between motorcycles and trucks; motorcycles are viewed by truck drivers from downward angles, and shorter distances between them mean steeper downward angles. Hence, we anticipated that the effects of motorcycle conspicuity treatments would be different for truck drivers. Therefore, this study aims to evaluate the effects of motorcycle conspicuity treatments on the identification and detection of motorcycles by truck drivers. Two complementary experiments were performed; the first experiment assessed the impact of motorcycle sensory conspicuity on the ability of un-alerted truck drivers to detect motorcycles, and the second experiment assessed the motorcycle cognitive conspicuity to alerted truck drivers. The sensory conspicuity was measured in terms of motorcycle detection rates by un-alerted truck drivers when they were not anticipating a motorcycle within a realistic driving scene, while the cognitive conspicuity was determined by the time taken by alerted truck drivers to actively search for a motorcycle. In the first experiment, the participants were presented with 10 pictures and were instructed to report the kinds of vehicles that were presented in the pictures. Each picture was shown to the participants for 600ms. In the second experiment, the participants were presented with the same set of pictures and were instructed to respond by clicking the right button on a mouse as soon as they detected a motorcycle in the picture. The results indicate that the motorcycle detection rate increases, and the response time to search for a motorcycle decreases, as the distance between the targeted motorcycle and the viewer decreases. This is true regardless of the type of conspicuity treatment used. The use of daytime running headlights (DRH) was found to increase the detection rate and the identification of a motorcycle by a truck driver at a farther distance, but effect deteriorates as the distance decreases. The results show that the detection rate and the identification of a motorcyclist wearing a black helmet with a reflective sticker increases as the distance between the motorcycle and the truck decreases. We also found that a motorcyclist wearing a white helmet and a white outfit is more identifiable and detectable at both shorter and longer distances. In conclusion, although this study provides evidence that the use of appropriate conspicuity treatments enhances motorcycle conspicuity to truck drivers, we suggest that more attention should be paid to the effect of background environment on motorcycle conspicuity.
    Matched MeSH terms: Environment
  14. Hosseinpour M, Sahebi S, Zamzuri ZH, Yahaya AS, Ismail N
    Accid Anal Prev, 2018 Sep;118:277-288.
    PMID: 29861069 DOI: 10.1016/j.aap.2018.05.003
    According to crash configuration and pre-crash conditions, traffic crashes are classified into different collision types. Based on the literature, multi-vehicle crashes, such as head-on, rear-end, and angle crashes, are more frequent than single-vehicle crashes, and most often result in serious consequences. From a methodological point of view, the majority of prior studies focused on multivehicle collisions have employed univariate count models to estimate crash counts separately by collision type. However, univariate models fail to account for correlations which may exist between different collision types. Among others, multivariate Poisson lognormal (MVPLN) model with spatial correlation is a promising multivariate specification because it not only allows for unobserved heterogeneity (extra-Poisson variation) and dependencies between collision types, but also spatial correlation between adjacent sites. However, the MVPLN spatial model has rarely been applied in previous research for simultaneously modelling crash counts by collision type. Therefore, this study aims at utilizing a MVPLN spatial model to estimate crash counts for four different multi-vehicle collision types, including head-on, rear-end, angle, and sideswipe collisions. To investigate the performance of the MVPLN spatial model, a two-stage model and a univariate Poisson lognormal model (UNPLN) spatial model were also developed in this study. Detailed information on roadway characteristics, traffic volume, and crash history were collected on 407 homogeneous segments from Malaysian federal roads. The results indicate that the MVPLN spatial model outperforms the other comparing models in terms of goodness-of-fit measures. The results also show that the inclusion of spatial heterogeneity in the multivariate model significantly improves the model fit, as indicated by the Deviance Information Criterion (DIC). The correlation between crash types is high and positive, implying that the occurrence of a specific collision type is highly associated with the occurrence of other crash types on the same road segment. These results support the utilization of the MVPLN spatial model when predicting crash counts by collision manner. In terms of contributing factors, the results show that distinct crash types are attributed to different subsets of explanatory variables.
    Matched MeSH terms: Environment
  15. Rusli R, Haque MM, Afghari AP, King M
    Accid Anal Prev, 2018 Oct;119:80-90.
    PMID: 30007211 DOI: 10.1016/j.aap.2018.07.006
    Road safety in rural mountainous areas is a major concern as mountainous highways represent a complex road traffic environment due to complex topology and extreme weather conditions and are associated with more severe crashes compared to crashes along roads in flatter areas. The use of crash modelling to identify crash contributing factors along rural mountainous highways suffers from limitations in data availability, particularly in developing countries like Malaysia, and related challenges due to the presence of excess zero observations. To address these challenges, the objective of this study was to develop a safety performance function for multi-vehicle crashes along rural mountainous highways in Malaysia. To overcome the data limitations, an in-depth field survey, in addition to utilization of secondary data sources, was carried out to collect relevant information including roadway geometric factors, traffic characteristics, real-time weather conditions, cross-sectional elements, roadside features, and spatial characteristics. To address heterogeneity resulting from excess zeros, three specialized modelling techniques for excess zeros including Random Parameters Negative Binomial (RPNB), Random Parameters Negative Binomial - Lindley (RPNB-L) and Random Parameters Negative Binomial - Generalized Exponential (RPNB-GE) were employed. Results showed that the RPNB-L model outperformed the other two models in terms of prediction ability and model fit. It was found that heavy rainfall at the time of crash and the presence of minor junctions along mountainous highways increase the likelihood of multi-vehicle crashes, while the presence of horizontal curves along a steep gradient, the presence of a passing lane and presence of road delineation decrease the likelihood of multi-vehicle crashes. Findings of this study have significant implications for road safety along rural mountainous highways, particularly in the context of developing countries.
    Matched MeSH terms: Environment Design*
  16. Ibrahim MKA, Hamid H, Law TH, Wong SV
    Accid Anal Prev, 2018 Feb;111:63-70.
    PMID: 29172046 DOI: 10.1016/j.aap.2017.10.023
    Construction of exclusive motorcycle lanes is one of the measures to reduce motorcycle fatalities. Previous studies highlighted the risk of crashes with roadside objects and the tendency of motorcyclists to ride with excessive speed on exclusive motorcycle lanes. However, the risk of same-direction crashes on exclusive motorcycle lanes was not explored in much detail, especially on the impact of lane geometry and roadside configurations. This study used naturalistic riding data to determine the effects of lane width and roadside configurations on overtaking speed, lateral position and likelihood of comfortable overtaking on tangential sections of an exclusive motorcycle lane. Twenty-nine recruited motorcyclists rode the instrumented motorcycles along a 20km stretch of an exclusive motorcycle lane along a major urban road. Results revealed that both the roadside configurations and lane width significantly affect the participants' lateral position, while the roadside configurations only affects the overtaking speed. Participants' overtaking speeds and the front motorcycles' lateral position contribute significantly to the likelihood of comfortable overtaking in exclusive motorcycle lanes. The findings highlight the importance of micro-level behavior indicators in improving the design and overall safety of the exclusive motorcycle facility.
    Matched MeSH terms: Environment Design*
  17. Khoo HL, Ahmed M
    Accid Anal Prev, 2018 Apr;113:106-116.
    PMID: 29407657 DOI: 10.1016/j.aap.2018.01.025
    This study had developed a passenger safety perception model specifically for buses taking into consideration the various factors, namely driver characteristics, environmental conditions, and bus characteristics using Bayesian Network. The behaviour of bus driver is observed through the bus motion profile, measured in longitudinal, lateral, and vertical accelerations. The road geometry is recorded using GPS and is computed with the aid of the Google map while the perceived bus safety is rated by the passengers in the bus in real time. A total of 13 variables were derived and used in the model development. The developed Bayesian Network model shows that the type of bus and the experience of the driver on the investigated route could have an influence on passenger's perception of their safety on buses. Road geometry is an indirect influencing factor through the driver's behavior. The findings of this model are useful for the authorities to structure an effective strategy to improve the level of perceived bus safety. A high level of bus safety will definitely boost passenger usage confidence which will subsequently increase ridership.
    Matched MeSH terms: Environment
  18. Petre-Quadens O, Hussain H, Balaratnan C
    Acta Neurol Belg, 1975 Mar;75(2):85-92.
    PMID: 168717
    The Temiars are a tribe of negroid pygmies of basically Proto-Malaysian affinities. Field-work in the Malaysian jungle provided some observations on the sleep-wakefulness cycle of two young Temiar adults. This cycle was monophasic circumstances permitting. Their rest-activity cycle at night was similar in the jungle and in the laboratory. Polygraphic total night-sleep recordings were made with both of them in the EEG laboratory in the Hospital Besar in Kuala Lumpur. The eye-movement frequencies of PS were compared with those from young adults of the West. Although the differences were not statistically significant, the Rem-densities of the Temiars were constantly at the low side. The significance of the results are being discussed.
    Matched MeSH terms: Environment*
  19. Dieng H, Satho T, Abang F, Meli NKKB, Ghani IA, Nolasco-Hipolito C, et al.
    Acta Trop., 2017 May;169:84-92.
    PMID: 28174057 DOI: 10.1016/j.actatropica.2017.01.022
    In nature, adult mosquitoes typically utilize nectar as their main energy source, but they can switch to other as yet unidentified sugary fluids. Contemporary lifestyles, with their associated unwillingness to consume leftovers and improper disposal of waste, have resulted in the disposal of huge amounts of waste into the environment. Such refuse often contains unfinished food items, many of which contain sugar and some of which can collect water from rain and generate juices. Despite evidence that mosquitoes can feed on sugar-rich suspensions, semi-liquids, and decaying fruits, which can be abundant in garbage sites, the impacts of sweet waste fluids on dengue vectors are unknown. Here, we investigated the effects of extracts from some familiar sweet home waste items on key components of vectorial capacity of Aedes aegypti. Adult mosquitoes were fed one of five diets in this study: water (WAT); sucrose (SUG); bakery product (remnant of chocolate cake, BAK); dairy product (yogurt, YOG); and fruit (banana (BAN). Differences in survival, response time to host, and egg production were examined between groups. For both males and females, maintenance on BAK extract resulted in marked survival levels that were similar to those seen with SUG. Sweet waste extracts provided better substrates for survival compared to water, but this superiority was mostly seen with BAK. Females maintained on BAK, YOG, and BAN exhibited shorter response times to a host compared to their counterparts maintained on SUG. The levels of egg production were equivalent in waste extract- and SUG-fed females. The findings presented here illustrate the potential of sweet waste-derived fluids to contribute to the vectorial capacity of dengue vectors and suggest the necessity of readdressing the issue of waste disposal, especially that of unfinished sweet foods. Such approaches can be particularly relevant in dengue endemic areas where rainfall is frequent and waste collection infrequent.
    Matched MeSH terms: Environment
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links