Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, et al.
    J Trace Elem Med Biol, 2017 Jan;39:147-154.
    PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005
    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL(-1)). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL(-1)) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
  2. Lambuk L, Jafri AJ, Arfuzir NN, Iezhitsa I, Agarwal R, Rozali KN, et al.
    Neurotox Res, 2017 01;31(1):31-45.
    PMID: 27568334 DOI: 10.1007/s12640-016-9658-9
    Glutamate excitotoxicity plays a major role in the loss of retinal ganglion cells (RGCs) in glaucoma. The toxic effects of glutamate on RGCs are mediated by the overstimulation of N-methyl-D-aspartate (NMDA) receptors. Accordingly, NMDA receptor antagonists have been suggested to inhibit excitotoxicity in RGCs and delay the progression and visual loss in glaucoma patients. The purpose of the present study was to examine the potential neuroprotective effect of Mg acetyltaurate (MgAT) on RGC death induced by NMDA. MgAT was proposed mainly due to the combination of magnesium (Mg) and taurine which may provide neuroprotection by dual mechanisms of action, i.e., inhibition of NMDA receptors and antioxidant effects. Rats were divided into 5 groups and were given intravitreal injections. Group 1 (PBS group) was injected with vehicle; group 2 (NMDA group) was injected with NMDA while groups 3 (pre-), 4 (co-), and 5 (post-) treatments were injected with MgAT, 24 h before, in combination or 24 h after NMDA injection respectively. NMDA and MgAT were injected in PBS at doses 160 and 320 nmol, respectively. Seven days after intravitreal injection, the histological changes in the retina were evaluated using hematoxylin & eosin (H&E) staining. Optic nerves were dissected and stained in Toluidine blue for grading on morphological neurodegenerative changes. The extent of apoptosis in retinal tissue was assessed by TUNEL assay and caspase-3 immunohistochemistry staining. The estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors and caspase-3 activity in retina was done using enzyme-linked immunosorbent assay (ELISA) technique. The retinal morphometry showed reduced thickness of ganglion cell layer (GCL) and reduction in the number of retinal cells in GCL in NMDA group compared to the MgAT-treated groups. TUNEL and caspase-3 staining showed increased number of apoptotic cells in inner retina. The results were further corroborated by the estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors, and caspase-3 activity in retina. In conclusion, current study revealed that intravitreal MgAT prevents retinal and optic nerve damage induced by NMDA. Overall, our data demonstrated that the pretreatment with MgAT was more effective than co- and posttreatment. This protective effect of MgAT against NMDA-induced retinal cell apoptosis could be attributed to the reduction of retinal oxidative stress and activation of BDNF-related neuroprotective mechanisms.
  3. Agarwal R, Iezhitsa I, Awaludin NA, Ahmad Fisol NF, Bakar NS, Agarwal P, et al.
    Exp Eye Res, 2013 May;110:35-43.
    PMID: 23428743 DOI: 10.1016/j.exer.2013.02.011
    Cataract, a leading cause of blindness, is characterized by lenticular opacities resulting from denaturation of lens proteins due to activation of calcium-dependent enzyme, calpain. Magnesium (Mg(2+)) plays an important role not only in maintaining a low lenticular calcium (Ca(2+)) and sodium concentration but also in preserving the lens redox status. Taurine has also been shown to reduce lenticular oxidative stress. Present study evaluated the anticataract effects of magnesium taurate in vivo and in vitro. Among the five groups of 9 Sprague Dawley rats each, two groups received 30% galactose diet with topical (GDMT) or oral treatment (GDMO) with magnesium taurate. Two groups received 30% galactose diet with topical (GDT) or oral vehicle (GDO). Remaining 1 group received normal diet (ND). Weekly slit lamp examination was done during 21 days experimental period and then all rats were sacrificed; Ca/Mg ratio and antioxidant parameters including reduced glutathione (GSH), catalase and superoxide dismutase (SOD) activities were measured in the isolated lenses using ELISA. In the in vitro study, 2 groups of 10 normal rat lenses were incubated in Dulbecco's Modified Eagle's Medium (DMEM) with galactose while 1 similar group was incubated in DMEM without galactose. In one of the groups, galactose containing medium was supplemented with magnesium taurate. After 48 h of incubation, lenses were photographed and Ca(2+)/Mg(2+) ratio and antioxidant parameters were measured as for in vivo study. The in vivo study, at the end of experimental period, demonstrated delay in the development of cataract with a mean opacity index of 0.53 ± 0.04 and 0.51 ± 0.03 in GDMO (p < 0.05 versus GDO) and GDMT (p < 0.01 versus GDT) respectively. Histopathological grading showed a lower mean value in treated groups, however, the differences from corresponding controls were not significant. Lenticular Ca(2+)/Mg(2+) ratio with a mean value of 1.20 ± 0.26 and 1.05 ± 0.26 in GDMO and GDMT was significantly lower than corresponding controls (p < 0.05) and in GDMT no significant difference was observed from ND. Lenticular GSH and catalase activities were significantly lower and SOD activity was significantly higher in all galactose fed groups. However, in GDMT, GSH and catalase were significantly higher than corresponding control with mean values of 0.96 ± 0.30 μmol/gm lens weight and 56.98 ± 9.86 μmol/g lens protein respectively (p < 0.05 for GSH and p < 0.01 for catalase). SOD activity with mean values of 13.05 ± 6.35 and 13.27 ± 7.61 units/mg lens protein in GDMO and GDMT respectively was significantly lower compared to corresponding controls (p < 0.05) signifying lesser upregulation of SOD due to lesser oxidative stress in treated groups. In the in vitro study, lenses incubated in magnesium taurate containing medium showed less opacity and a lower mean Ca(2+)/Mg(2+) ratio of 1.64 ± 0.03, which was not significantly different from lenses incubated in DMEM without galactose. Lens GSH and catalase activities were restored to normal in lenses incubated in magnesium taurate containing medium. Both in vivo and in vitro studies demonstrated that treatment with magnesium taurate delays the onset and progression of cataract in galactose fed rats by restoring the lens Ca(2+)/Mg(2+) ratio and lens redox status.
  4. Arfuzir NN, Lambuk L, Jafri AJ, Agarwal R, Iezhitsa I, Sidek S, et al.
    Neuroscience, 2016 06 14;325:153-64.
    PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041
    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
  5. Iezhitsa I, Agarwal R, Saad SD, Zakaria FK, Agarwal P, Krasilnikova A, et al.
    Mol Vis, 2016;22:734-47.
    PMID: 27440992
    PURPOSE: Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats.

    METHODS: The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca(2+)-ATPase, Na(+),K(+)-ATPase, and calpain II activities.

    RESULTS: The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05).

    CONCLUSIONS: Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress.

  6. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, et al.
    Exp Eye Res, 2016 Feb;143:9-16.
    PMID: 26424219 DOI: 10.1016/j.exer.2015.09.014
    Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status.
  7. Abdul Nasir NA, Agarwal P, Agarwal R, Iezhitsa I, Alyautdin R, Nukolova NN, et al.
    Drug Deliv, 2016 Oct;23(8):2765-71.
    PMID: 26289215
    Topical administration is the preferred route of drug delivery for ophthalmic ailments. However, poor permeation through ocular surface and significant systemic absorption, makes the topical drug delivery challenging. Furthermore, distribution of topically delivered drugs varies with their physicochemical properties and the type of formulation used. Hence, this study was done to understand the pattern of ocular drug distribution of topically applied hydrophilic and lipophilic substances in two different formulations.
  8. Seger S, Nasharuddin NNB, Fernandez SL, Yunus SRBM, Shun NTM, Agarwal P, et al.
    Pan Afr Med J, 2020;37:151.
    PMID: 33425184 DOI: 10.11604/pamj.2020.37.151.21716
    Introduction: irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. The medical programme is among the most challenging and stressful undergraduate programmes which may predispose to higher rates of IBS. This study sought to determine the prevalence of undiagnosed IBS and the factors associated with IBS among medical students in a Malaysian private university.

    Methods: a cross sectional study was conducted among the medical students from semester 6 to semester 9 (year 3, year 4 and year 5) of a Malaysian private university. The questionnaire consisted of 2 main sections. Section A was on demographic data and section B consisted of the Hospital Anxiety and Depression Scale (HADS), the Pittsburgh Sleep Quality Index (PSQI) and the Rome IV Questionnaire for IBS. Association between the factors gathered and IBS was assessed using the Chi-Square test. Variables with a p-value of less than 0.2 in the univariate analysis were entered into a multivariate analysis model.

    Results: number of students who responded were 190 (56.3%) were females, 66.3% were Chinese and 37.9% were from semester 9. Twenty-eight (14.7%) students had symptoms consistent with a diagnosis of IBS. Depression was found to be significantly associated with IBS (adjusted OR: 4.749, CI: 1.809-12.470).

    Conclusion: this study suggests that IBS is common among Malaysian medical students. There was a significant association between IBS and depression.

  9. Pandey V, Salam SA, Moda A, Agarwal P, Nath S, Pulikkotil SJ
    Dent Res J (Isfahan), 2015 11 26;12(5):461-8.
    PMID: 26604961
    BACKGROUND: Use of smokeless tobacco in the form of moist snuff placed in the oral cavity is popular in rural India. The aim of the present cross-sectional study was to determine the effect of snuff on periodontitis by assessing interleukin (IL)-1 β and IL-8 levels in gingival crevicular fluid.

    MATERIALS AND METHODS: A total of 60 subjects were selected for this study. 40 subjects presented with periodontitis, which included 20 snuff users (SP) and 20 nonsnuff users (NS). 20 periodontally healthy patients formed the controls (healthy control: HC). The clinical parameters recorded were gingival index (GI), plaque index, calculus index, bleeding on probing (BOP), probing depth (PD), recession (RC), and clinical attachment level (CAL). The IL-1 β and IL-8 levels were assessed through enzyme-linked immunosorbent assay (Quantikine(®)). Analysis of variance (ANOVA), post-hoc Tukey's, Kruskal-Walli's ANOVA and Mann-Whitney test was used for comparison among groups and P > 0.05 was considered statistically significant.

    RESULTS: No significant difference was seen in levels of IL-1 β and IL-8 between SP and NS groups (P = 0.16, 0.97). However, both the periodontitis groups (SP and NS) had increased IL-β levels when compared to HC group (P = 0.01, 0.001). The snuff users showed significant increase in GI, BOP, RC, and CAL when compared with NS (P = 0.002, 0.001, 0.012, 0.002) whereas NS group had significant increase in PD (P = 0.003).

    CONCLUSION: Within the limitations of this study, use of snuff does not affect the host inflammatory response associated with periodontitis and leads to RC and increased CAL due to local irritant effect.

  10. Razali N, Agarwal R, Agarwal P, Kapitonova MY, Kannan Kutty M, Smirnov A, et al.
    Eur J Pharmacol, 2015 Feb 15;749:73-80.
    PMID: 25481859 DOI: 10.1016/j.ejphar.2014.11.029
    Steroid-induced ocular hypertension (SIOH) is associated with topical and systemic use of steroids. However, SIOH-associated anterior and posterior segment morphological changes in rats have not been described widely. Here we describe the pattern of intraocular pressure (IOP) changes, quantitative assessment of trabecular meshwork (TM) and retinal morphological changes and changes in retinal redox status in response to chronic dexamethasone treatment in rats. We also evaluated the responsiveness of steroid-pretreated rat eyes to 5 different classes of antiglaucoma drugs that act by different mechanisms. Up to 80% of dexamethasone treated animals achieved significant and sustained IOP elevation. TM thickness was significantly increased and number of TM cells was significantly reduced in SIOH rats compared to the vehicle-treated rats. Quantitative assessment of retinal morphology showed significantly reduced thickness of ganglion cell layer (GCL) and inner retina (IR) in SIOH rats compared to vehicle-treated rats. Estimation of retinal antioxidants including catalase, superoxide dismutase and glutathione showed significantly increased retinal oxidative stress in SIOH animals. Furthermore, steroid-treated eyes showed significant IOP lowering in response to treatment with 5 different drug classes. This indicated the ability of SIOH eyes to respond to drugs acting by different mechanisms. In conclusion, SIOH was associated with significant morphological changes in TM and retina and retinal redox status. Additionally, SIOH eyes also showed IOP lowering in response to drugs that act by different mechanisms of action. Hence, SIOH rats appear to be an inexpensive and noninvasive model for studying the experimental antiglaucoma drugs for IOP lowering and neuroprotective effects.
  11. Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, et al.
    Drug Deliv, 2016 May;23(4):1075-91.
    PMID: 25116511 DOI: 10.3109/10717544.2014.943336
    Topical route of administration is the most commonly used method for the treatment of ophthalmic diseases. However, presence of several layers of permeation barriers starting from the tear film till the inner layers of cornea make it difficult to achieve the therapeutic concentrations in the target tissue within the eye. In order to circumvent these barriers and to provide sustained and targeted drug delivery, tremendous advances have been made in developing efficient and safe drug delivery systems. Liposomes due to their unique structure prove to be extremely beneficial drug carriers as they can entrap both the hydrophilic and hydrophobic drugs. The conventional liposomes had several drawbacks particularly their tendency to aggregate, the instability and leakage of entrapped drug and susceptibility to phagocytosis. Due to this reason, for a long time, liposomes as drug delivery systems did not attract much attention of researchers and clinicians. However, over recent years development of new generation liposomes has opened up new approaches for targeted and sustained drug delivery using liposomes and has rejuvenated the interest of researchers in this field. In this review we present a summary of current literature to understand the anatomical and physiological limitation in achieving adequate ocular bioavailability of topically applied drugs and utility of liposomes in overcoming these limitations. The recent developments related to new generation liposomes are discussed.
  12. Agarwal P, Wong YH, Das Gupta E, Agarwal R, Livingstone BI, Ramamurthy S, et al.
    Cutan Ocul Toxicol, 2015;34(3):179-84.
    PMID: 25068998 DOI: 10.3109/15569527.2014.938751
    BACKGROUND: Hydroxychloroquine (HCQ) is widely used for long-term treatment of autoimmune diseases such as rheumatoid arthritis. However, its long-term use is known to be associated with visual changes due to retinal damage. Retinal damage associated with long-term HCQ therapy is preventable if the drug is discontinued early when the patients are still asymptomatic. In view of contrasting reports from previous studies, we investigated the association of prolonged HCQ therapy with retinal thickness in macular area.
    METHODS: This study included 48 patients on long-term HCQ therapy and 38 healthy controls. All subjects underwent examination for corrected visual acuity, fundus photography, visual fields and SD-OCT for retinal thickness.
    RESULTS: Visual acuity, visual fields, fundus photography and SD-OCT did not reveal changes consistent with diagnosis of established HCQ retinopathy in any of the subjects from HCQ group. Retinal thickness in central, parafoveal and perifoveal areas did not show significant differences between HCQ and control groups. However, we observed negative correlation between cumulative dose and retinal thickness in the parafoveal (p = 0.003) and perifoveal areas (p = 0.019) but not in the central area.
    CONCLUSIONS: Correlation of cumulative dose with retinal thickness in parafoveal and perifoveal areas and not the central area is in accordance with the late appearance of HCQ-induced bull's eye retinopathy. Hence screening of asymptomatic patients using OCT seems to be of great importance for early detection of retinal changes.
    KEYWORDS: Cumulative dose; OCT; hydroxychloroquine; retinal thickness
  13. Agarwal R, Krasilnikova AV, Raja IS, Agarwal P, Mohd Ismail N
    Eur J Pharmacol, 2014 May 5;730:8-13.
    PMID: 24583339 DOI: 10.1016/j.ejphar.2014.02.021
    Angiotensin converting enzyme inhibitors (ACEIs) have been shown to lower intraocular pressure (IOP). Since, the ACEIs cause increased tissue prostaglandin levels, we hypothesized that the mechanisms of ACEI-induced IOP reduction have similarity with those of prostaglandin analogs. The present study investigated the involvement of matrix metalloproteinases (MMPs) and cytokine activity modulation as the underlying mechanisms of ACEI-induced ocular hypotension. The IOP lowering effect of single drop of enalaprilat dehydrate 1% was evaluated in rats pretreated with a broad spectrum MMP inhibitor or a cytokine inhibitor. Effect of angiotensin receptor blocker, losartan potassium 2%, was also studied to evaluate involvement of angiotensin II receptor type 1 (AT1) in IOP lowering effect of ACEI. Topical treatment with single drop of enalaprilat resulted in significant IOP reduction in treated eye with mean peak reduction 20.3% at 3h post-instillation. Treatment with losartan resulted in a peak IOP reduction of 13.3%, which was significantly lower than enalaprilat, indicating involvement of mechanisms in addition to AT1 blockade. Pretreatment with a broad spectrum MMP inhibitor or a cytokine inhibitor significantly attenuated the enalprilat-induced IOP reduction with mean peak IOP reduction of 11.2% and 13.6% respectively. The IOP-lowering effect of enalaprilat seems to be attributed to reduced angiotensin II type 1 receptor stimulation and modulation of MMP and cytokines activities.
  14. Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N
    Eur J Neurosci, 2020 06;51(12):2394-2411.
    PMID: 31883161 DOI: 10.1111/ejn.14662
    Brain-derived neurotrophic factor (BDNF) could be considered a potential neuroprotective therapy in amyloid beta (Aβ)-associated retinal and optic nerve degeneration. Hence, in this study we investigated the neuroprotective effect of BDNF against Aβ1-40-induced retinal and optic nerve injury. In this study, exposure to Aβ1-40 was associated with retinal and optic nerve injury. TUNEL staining showed significant reduction in the apoptotic cell count in the BDNF-treated group compared with Aβ1-40 group. H&E-stained retinal sections also showed a striking reduction in neuronal cells in the ganglion cell layer (GCL) of retinas fourteen days after Aβ1-40 exposure. By contrast, number of retinal cells was preserved in the retinas of BDNF-treated animals. After Aβ1-40 exposure, visible axonal swelling was observed in optic nerve sections. However, the BDNF-treated group showed fewer changes in optic nerve; axonal swelling was less frequent and less marked. In the present study, exposure to Aβ was associated with oxidative stress, whereas levels of retinal glutathione (GSH), superoxide dismutase (SOD) and catalase were significantly increased in BDNF-treated than in Aβ1-40-treated rats. Both visual object recognition tests using an open-field arena and a Morris water maze showed that BDNF improved rats' ability to recognise visual cues (objects with different shapes) after Aβ1-40 exposure, thus demonstrating that the visual performance of rats was relatively preserved following BDNF treatment. In conclusion, intravitreal treatment with BDNF prevents Aβ1-40-induced retinal cell apoptosis and axon loss in the optic nerve of rats by reducing retinal oxidative stress and restoring retinal BDNF levels.
  15. Razali N, Agarwal R, Agarwal P, Kumar S, Tripathy M, Vasudevan S, et al.
    Clin Exp Ophthalmol, 2015 Jan-Feb;43(1):54-66.
    PMID: 24995479 DOI: 10.1111/ceo.12375
    BACKGROUND: Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol.
    METHODS: The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction.
    RESULTS: All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A₁ antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A₃ and A₂A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A₂B and A₁, followed by A2A and A₃ AR.
    CONCLUSION: Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A₁ AR.
    KEYWORDS: adenosine receptors; docking simulation; intraocular pressure; resveratrol; topical
  16. Razali N, Agarwal R, Agarwal P, Froemming GRA, Tripathy M, Ismail NM
    Eur J Pharmacol, 2018 Nov 05;838:1-10.
    PMID: 30171854 DOI: 10.1016/j.ejphar.2018.08.035
    Trans-resveratrol was earlier shown to lower intraocular pressure (IOP) in rats; however, its mechanisms of action remain unclear. It has been shown to modulate adenosine receptor (AR) and TGF-β2 signaling, both of which play a role in regulating IOP. Hence, we investigated effects of trans-resveratrol on AR and TGF-β2 signaling. Steroid-induced ocular hypertensive (SIOH) rats were pretreated with A1AR, phospholipase C (PLC) and ERK1/2 inhibitors and were subsequently treated with single drop of trans-resveratrol. Metalloproteinases (MMP)-2 and -9 were measured in aqueous humor (AH). In another set of experiments, effect of trans-resveratrol on AH level of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) was determined after single and multiple drop administration in SIOH rats. Effect of trans-resveratrol on ARs expression, PLC and pERK1/2 activation and MMPs, tPA and uPA secretion was determined using human trabecular meshwork cells (HTMC). Further, effect of trans-resveratrol on TGF-β2 receptors, SMAD signaling molecules and uPA and tPA expression by HTMC was determined in the presence and absence of TGF-β2. Pretreatment with A1AR, PLC and ERK1/2 inhibitors antagonized the IOP lowering effect of trans-resveratrol and caused significant reduction in the AH level of MMP-2 in SIOH rats. Trans-resveratrol increased A1AR and A2AAR expression, cellular PLC, pERK1/2 levels and MMP-2, tPA and uPA secretion by HTMC. Additionally, it produced TGFβRI downregulation and SMAD 7 upregulation. In conclusion, IOP lowering effect of trans-resveratrol involves upregulation of A1AR expression, PLC and ERK1/2 activation and increased MMP-2 secretion. It downregulates TGFβRI and upregulates SMAD7 hence, inhibits TGF-β2 signaling.
  17. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Ismail NM
    Neural Regen Res, 2018 Nov;13(11):2014-2021.
    PMID: 30233077 DOI: 10.4103/1673-5374.239450
    Endothelin-1 (ET-1), a potent vasoconstrictor, is involved in retinal vascular dysregulation and oxidative stress in glaucomatous eyes. Taurine (TAU), a naturally occurring free amino acid, is known for its neuroprotective and antioxidant properties. Hence, we evaluated its neuroprotective properties against ET-1 induced retinal and optic nerve damage. ET-1 was administered intravitreally to Sprague-Dawley rats and TAU was injected as pre-, co- or post-treatment. Animals were euthanized seven days post TAU injection. Retinae and optic nerve were examined for morphology, and were also processed for caspase-3 immunostaining. Retinal redox status was estimated by measuring retinal superoxide dismutase, catalase, glutathione, and malondialdehyde levels using enzyme-linked immuosorbent assay. Histopathological examination showed significantly improved retinal and optic nerve morphology in TAU-treated groups. Morphometric examination showed that TAU pre-treatment provided marked protection against ET-1 induced damage to retina and optic nerve. In accordance with the morphological observations, immunostaining for caspase showed a significantly lesser number of apoptotic retinal cells in the TAU pre-treatment group. The retinal oxidative stress was reduced in all TAU-treated groups, and particularly in the pre-treatment group. The findings suggest that treatment with TAU, particularly pre-treatment, prevents apoptosis of retinal cells induced by ET-1 and hence prevents the changes in the morphology of retina and optic nerve. The protective effect of TAU against ET-1 induced retinal and optic nerve damage is associated with reduced retinal oxidative stress.
  18. Lambuk L, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Ismail NM
    Neurotoxicology, 2019 01;70:62-71.
    PMID: 30385388 DOI: 10.1016/j.neuro.2018.10.009
    OBJECTIVE: N-methyl-D-aspartate (NMDA) excitotoxicity has been proposed to mediate apoptosis of retinal ganglion cells (RGCs) in glaucoma. Taurine (TAU) has been shown to have neuroprotective properties, thus we examined anti-apoptotic effect of TAU against retinal damage after NMDA exposure.

    METHODOLOGY: Sprague-Dawley rats were divided into 5 groups of 33 each. Group 1 was administered intravitreally with PBS and group 2 was similarly injected with NMDA (160 nmol). Groups 3, 4 and 5 were injected with TAU (320 nmol) 24 hours before (pre-treatment), in combination (co-treatment) and 24 hours after (post-treatment) NMDA exposure respectively. Seven days after injection, rats were sacrificed; eyes were enucleated, fixed and processed for morphometric analysis, TUNEL and caspase-3 staining. Optic nerve morphology assessment was done using toluidine blue staining. The estimation of BDNF, pro/anti-apoptotic factors (Bax/Bcl-2) and caspase-3 activity in retina was done using ELISA technique.

    RESULTS: Severe degenerative changes were observed in retinae after intravitreal NMDA exposure. The retinal morphology in the TAU pre-treated group appeared more similar to the control retinae and demonstrated a higher number of nuclei than the NMDA group both per 100 μm length (by 1.5-fold, p p p p p p 

  19. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM
    Exp Eye Res, 2020 05;194:107996.
    PMID: 32156652 DOI: 10.1016/j.exer.2020.107996
    Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
  20. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, et al.
    Curr Eye Res, 2018 08;43(8):1032-1040.
    PMID: 29676937 DOI: 10.1080/02713683.2018.1467933
    PURPOSE: Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone.

    METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.

    RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.

    CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links