Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Agarwal P, Agarwal R
    Expert Opin Ther Targets, 2018 07;22(7):629-638.
    PMID: 29883239 DOI: 10.1080/14728222.2018.1486822
    INTRODUCTION: Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.
  2. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, et al.
    Exp Eye Res, 2016 Feb;143:9-16.
    PMID: 26424219 DOI: 10.1016/j.exer.2015.09.014
    Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status.
  3. Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N
    Int J Neurosci, 2018 Oct;128(10):952-965.
    PMID: 29488424 DOI: 10.1080/00207454.2018.1446953
    PURPOSE: Amyloid beta (Aβ) is known to contribute to the pathophysiology of retinal neurodegenerative diseases such as glaucoma. Effects of intravitreal Aβ(1-42) on retinal and optic nerve morphology in animal models have widely been studied but not those of Aβ(1-40). Hence, we evaluated the time- and dose-related effects of intravitreal Aβ(1-40) on retinal and optic nerve morphology. Since oxidative stress and brain derived neurotrophic factor (BDNF) are associated with Aβ-induced neuronal damage, we also studied dose and time-related effects of Aβ(1-40) on retinal oxidative stress and BDNF levels.

    MATERIALS AND METHODS: Five groups of rats were intravitreally administered with vehicle or Aβ(1-40) in doses of 1.0, 2.5, 5 and 10 nmol. Animals were sacrificed and eyes were enucleated at weeks 1, 2 and 4 post-injection. The retinae were subjected to morphometric analysis and TUNEL staining. Optic nerve sections were stained with toluidine blue and were graded for neurodegenerative effects. The estimation of BDNF and markers of oxidative stress in retina were done using ELISA technique.

    RESULTS AND CONCLUSIONS: It was observed that intravitreal Aβ(1-40) causes significant retinal and optic nerve damage up to day 14 post-injection and there was increasing damage with increase in dose. However, on day 30 post-injection both the retinal and optic nerve morphology showed a trend towards normalization. The observations made for retinal cell apoptosis, retinal glutathione, superoxide dismutase activity and BDNF were in accordance with those of morphological changes with deterioration till day 14 and recovery by day 30 post-injection. The findings of this study may provide a guide for selection of appropriate experimental conditions for future studies.

  4. Agarwal R, Gupta SK, Srivastava S, Agarwal P, Agrawal SS
    Expert Opin Drug Discov, 2009 Feb;4(2):147-58.
    PMID: 23480513 DOI: 10.1517/13543770802668117
    Curcuma longa is among the most commonly used spices in India and other Asian countries. The herb has also been used in Ayurveda and other traditional systems of medicine for the prevention and treatment of a variety of ailments. Curcuminoids are the major chemical constituents of C. longa that are of medicinal importance. Today, a large body of scientific evidence exists to indicate potential therapeutic benefits of C. longa. Several preclinical and clinical studies have investigated the pharmacological properties of C. longa and results indicate strong therapeutic potential for anti-inflammatory, antioxidant, antibacterial, anticancer and many other properties.
  5. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Ismail NM
    Neural Regen Res, 2018 Nov;13(11):2014-2021.
    PMID: 30233077 DOI: 10.4103/1673-5374.239450
    Endothelin-1 (ET-1), a potent vasoconstrictor, is involved in retinal vascular dysregulation and oxidative stress in glaucomatous eyes. Taurine (TAU), a naturally occurring free amino acid, is known for its neuroprotective and antioxidant properties. Hence, we evaluated its neuroprotective properties against ET-1 induced retinal and optic nerve damage. ET-1 was administered intravitreally to Sprague-Dawley rats and TAU was injected as pre-, co- or post-treatment. Animals were euthanized seven days post TAU injection. Retinae and optic nerve were examined for morphology, and were also processed for caspase-3 immunostaining. Retinal redox status was estimated by measuring retinal superoxide dismutase, catalase, glutathione, and malondialdehyde levels using enzyme-linked immuosorbent assay. Histopathological examination showed significantly improved retinal and optic nerve morphology in TAU-treated groups. Morphometric examination showed that TAU pre-treatment provided marked protection against ET-1 induced damage to retina and optic nerve. In accordance with the morphological observations, immunostaining for caspase showed a significantly lesser number of apoptotic retinal cells in the TAU pre-treatment group. The retinal oxidative stress was reduced in all TAU-treated groups, and particularly in the pre-treatment group. The findings suggest that treatment with TAU, particularly pre-treatment, prevents apoptosis of retinal cells induced by ET-1 and hence prevents the changes in the morphology of retina and optic nerve. The protective effect of TAU against ET-1 induced retinal and optic nerve damage is associated with reduced retinal oxidative stress.
  6. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM
    Amino Acids, 2019 Apr;51(4):641-646.
    PMID: 30656415 DOI: 10.1007/s00726-019-02696-4
    This study aimed to evaluate effect of TAU on NMDA-induced changes in retinal redox status, retinal cell apoptosis and retinal morphology in Sprague-Dawley rats. Taurine was injected intravitreally as pre-, co- or post-treatment with NMDA and 7 days post-treatment retinae were processed for estimation of oxidative stress, retinal morphology using H&E staining and retinal cell apoptosis using TUNEL staining. Treatment with TAU, particularly pre-treatment, significantly increased retinal glutathione, superoxide dismutase and catalase levels compared to NMDA-treated rats; whereas, the levels of malondialdehyde reduced significantly. Reduction in retinal oxidative stress in TAU pre-treated group was associated with significantly greater fractional thickness of ganglion cell layer within inner retina and retinal cell density in inner retina. TUNEL staining showed significantly reduced apoptotic cell count in TAU pre-treated group compared to NMDA group. It could be concluded that TAU protects against NMDA-induced retinal injury in rats by reducing retinal oxidative stress.
  7. Agarwal R, Agarwal P
    Exp Biol Med (Maywood), 2017 Feb;242(4):374-383.
    PMID: 27798117 DOI: 10.1177/1535370216675065
    Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
  8. Agarwal P, Agarwal R
    Expert Opin Ther Targets, 2021 Jul;25(7):585-596.
    PMID: 34402357 DOI: 10.1080/14728222.2021.1969362
    INTRODUCTION: The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss.

    AREAS COVERED: This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations.

    EXPERT OPINION: Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.

  9. Razali N, Agarwal R, Agarwal P, Kumar S, Tripathy M, Vasudevan S, et al.
    Clin Exp Ophthalmol, 2015 Jan-Feb;43(1):54-66.
    PMID: 24995479 DOI: 10.1111/ceo.12375
    BACKGROUND: Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol.
    METHODS: The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction.
    RESULTS: All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A₁ antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A₃ and A₂A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A₂B and A₁, followed by A2A and A₃ AR.
    CONCLUSION: Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A₁ AR.
    KEYWORDS: adenosine receptors; docking simulation; intraocular pressure; resveratrol; topical
  10. Agarwal R, Agarwal P
    Expert Opin Drug Discov, 2017 Mar;12(3):261-270.
    PMID: 28075618 DOI: 10.1080/17460441.2017.1281244
    Rodents have widely been used to represent glaucomatous changes both in the presence and absence of elevated intraocular pressure (IOP) as they offer clear advantages over other animal species. IOP elevation is commonly achieved by creating an obstruction in the aqueous outflow pathways, consequently leading to retinal ganglion cell and optic nerve (ON) damage, the hallmark of glaucoma. These changes may also be achieved in the absence of elevated IOP by directly inflicting injury to retina or ON. Areas covered: This paper presents a summary of currently used rodent models of glaucoma. The characteristics of these models from several studies are summarized. The benefits and shortcomings of these models are also discussed. Expert opinion: The choice of animal model that closely represents human disease is key for successful translational of preclinical research to clinical practice. Rodent models of rapid IOP elevation are likely to be least representative, whereas models such as steroid-induced glaucoma models more closely resemble the trabecular meshwork changes seen in glaucomatous human eyes. However, this model needs further characterization. Rodent models based on direct retinal and ON injury are also useful tools to investigate molecular mechanisms involved at the site of final common pathology and neuroprotective strategies.
  11. Jafri AJA, Agarwal R, Iezhitsa I, Agarwal P, Spasov A, Ozerov A, et al.
    Mol Vis, 2018;24:495-508.
    PMID: 30090013
    Purpose: Retinal nitrosative stress associated with altered expression of nitric oxide synthases (NOS) plays an important role in excitotoxic retinal ganglion cell loss in glaucoma. The present study evaluated the effects of magnesium acetyltaurate (MgAT) on changes induced by N-methyl-D-aspartate (NMDA) in the retinal expression of three NOS isoforms, retinal 3-nitrotyrosine (3-NT) levels, and the extent of retinal cell apoptosis in rats. Effects of MgAT with taurine (TAU) alone were compared to understand the benefits of a combined salt of Mg and TAU.

    Methods: Excitotoxic retinal injury was induced with intravitreal injection of NMDA in Sprague-Dawley rats. All treatments were given as pre-, co-, and post-treatment with NMDA. Seven days post-injection, the retinas were processed for measurement of the expression of NOS isoforms using immunostaining and enzyme-linked immunosorbent assay (ELISA), retinal 3-NT content using ELISA, retinal histopathological changes using hematoxylin and eosin (H&E) staining, and retinal cell apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining.

    Results: As observed on immunohistochemistry, the treatment with NMDA caused a 4.53-fold increase in retinal nNOS expression compared to the PBS-treated rats (p<0.001). Among the MgAT-treated groups, only the pretreatment group showed significantly lower nNOS expression than the NMDA-treated group with a 2.00-fold reduction (p<0.001). Among the TAU-treated groups, the pre- and cotreatment groups showed 1.84- and 1.71-fold reduction in nNOS expression compared to the NMDA-treated group (p<0.001), respectively, but remained higher compared to the PBS-treated group (p<0.01). Similarly, iNOS expression in the NMDA-treated group was significantly greater than that for the PBS-treated group (2.68-fold; p<0.001). All MgAT treatment groups showed significantly lower iNOS expression than the NMDA-treated groups (3.58-, 1.51-, and 1.65-folds, respectively). However, in the MgAT co- and post-treatment groups, iNOS expression was significantly greater than in the PBS-treated group (1.77- and 1.62-folds, respectively). Pretreatment with MgAT caused 1.77-fold lower iNOS expression compared to pretreatment with TAU (p<0.05). In contrast, eNOS expression was 1.63-fold higher in the PBS-treated group than in the NMDA-treated group (p<0.001). Among all treatment groups, only pretreatment with MgAT caused restoration of retinal eNOS expression with a 1.39-fold difference from the NMDA-treated group (p<0.05). eNOS expression in the MgAT pretreatment group was also 1.34-fold higher than in the TAU pretreatment group (p<0.05). The retinal NOS expression as measured with ELISA was in accordance with that estimated with immunohistochemistry. Accordingly, among the MgAT treatment groups, only the pretreated group showed 1.47-fold lower retinal 3-NT than the NMDA-treated group, and the difference was significant (p<0.001). The H&E-stained retinal sections in all treatment groups showed statistically significantly greater numbers of retinal cell nuclei than the NMDA-treated group in the inner retina. However, the ganglion cell layer thickness in the TAU pretreatment group remained 1.23-fold lower than that in the MgAT pretreatment group (p<0.05). In line with this observation, the number of apoptotic cells as observed after TUNEL staining was 1.69-fold higher after pretreatment with TAU compared to pretreatment with MgAT (p<0.01).

    Conclusions: MgAT and TAU, particularly with pretreatment, reduce retinal cell apoptosis by reducing retinal nitrosative stress. Pretreatment with MgAT caused greater improvement in NMDA-induced changes in iNOS and eNOS expression and retinal 3-NT levels than pretreatment with TAU. The greater reduction in retinal nitrosative stress after pretreatment with MgAT was associated with lower retinal cell apoptosis and greater preservation of the ganglion cell layer thickness compared to pretreatment with TAU.

  12. Arfuzir NN, Lambuk L, Jafri AJ, Agarwal R, Iezhitsa I, Sidek S, et al.
    Neuroscience, 2016 06 14;325:153-64.
    PMID: 27012609 DOI: 10.1016/j.neuroscience.2016.03.041
    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress.
  13. Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, et al.
    J Trace Elem Med Biol, 2017 Jan;39:147-154.
    PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005
    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL(-1)). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL(-1)) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
  14. Seger S, Nasharuddin NNB, Fernandez SL, Yunus SRBM, Shun NTM, Agarwal P, et al.
    Pan Afr Med J, 2020;37:151.
    PMID: 33425184 DOI: 10.11604/pamj.2020.37.151.21716
    Introduction: irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorder. The medical programme is among the most challenging and stressful undergraduate programmes which may predispose to higher rates of IBS. This study sought to determine the prevalence of undiagnosed IBS and the factors associated with IBS among medical students in a Malaysian private university.

    Methods: a cross sectional study was conducted among the medical students from semester 6 to semester 9 (year 3, year 4 and year 5) of a Malaysian private university. The questionnaire consisted of 2 main sections. Section A was on demographic data and section B consisted of the Hospital Anxiety and Depression Scale (HADS), the Pittsburgh Sleep Quality Index (PSQI) and the Rome IV Questionnaire for IBS. Association between the factors gathered and IBS was assessed using the Chi-Square test. Variables with a p-value of less than 0.2 in the univariate analysis were entered into a multivariate analysis model.

    Results: number of students who responded were 190 (56.3%) were females, 66.3% were Chinese and 37.9% were from semester 9. Twenty-eight (14.7%) students had symptoms consistent with a diagnosis of IBS. Depression was found to be significantly associated with IBS (adjusted OR: 4.749, CI: 1.809-12.470).

    Conclusion: this study suggests that IBS is common among Malaysian medical students. There was a significant association between IBS and depression.

  15. Nekkanti S, Kaur K, Balagopal S, Agarwal P
    J Int Soc Prev Community Dent, 2020 11 24;10(6):759-765.
    PMID: 33437710 DOI: 10.4103/jispcd.JISPCD_339_20
    Aim and Objectives: Toothbrushing is one of the most important factors in controlling plaque accumulation and dental caries. There are vast varieties of toothbrushes available in the market. This study was designed to evaluate the effectiveness of novel chewable toothbrushes as compared to manual toothbrushes in plaque removal among 10-12-year-old children.

    Materials and Methods: This randomized controlled trial was conducted on 40 healthy children aged between 10 and 12 years of age who were randomly assigned to either of the groups: Group I--Chewable Toothbrushes and Group II--Manual Toothbrushes. Following oral prophylaxis, baseline records of oral hygiene indices (Simplified oral hygiene index (OHI-S) in indexed teeth and Turesky modification of Quigley Hein plaque index (TMQHI) were taken. Baseline Saliva samples were collected and sent for Streptococcus mutans counts. Children were then instructed to use their respective toothbrush twice daily for a week. Oral hygiene indices and S. mutans counts were repeated after 1 week.

    Results: Differences in pre-brushing and post-brushing plaque scores and salivary S. mutans counts were statistically significant when compared using paired-sample t test and independent-sample t test. There was a significant reduction in salivary S. mutans counts after using both chewable and manual toothbrushes. However, there was no statistically significant difference between the two groups (P = 0.08).

    Conclusion: Chewable toothbrushes are equally effective in plaque control when compared to manual toothbrushes. These can be a reliable alternative for children who lack manual dexterity.

  16. Agarwal R, Iezhitsa L, Agarwal P
    Biometals, 2013 Nov 15.
    PMID: 24233809
    Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of several vital ocular tissues such as cornea, lens and retina. The magnesium content of lens, especially in its peripheral part, is higher than that in aqueous and vitreous humor. Magnesium has also been shown to play critically important role in retinal functions. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body and regulates neuroexcitability and several ion channels. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Such ionic imbalances in turn alter the other cellular enzymatic reactions and form the basis of the association of magnesium deficiency with ophthalmic diseases such as cataract. In presence of magnesium deficiency, an imbalance between mediators of vasoconstriction and vasorelaxation may underlie the vasospasm, which is one of the pathogenic factors in primary open angle glaucoma. Furthermore, magnesium deficiency is also a contributing factor in increased oxidative stress and inducible NOS stimulation that can further contribute in the initiation and progression of ocular pathologies such as cataract, glaucoma and diabetic retinopathy. In this paper we review the association of disturbances of magnesium homeostasis with several ophthalmic diseases.
  17. Agarwal R, Agarwal P
    Expert Opin Ther Targets, 2014 May;18(5):527-39.
    PMID: 24579961 DOI: 10.1517/14728222.2014.888416
    The homeostatic role of adenosine in regulating intraocular pressure (IOP) is now widely recognized, and hence, the drugs targeting adenosine receptors have become the focus of investigation. In this review, we summarize the adenosine receptor signaling pathways, which could be potential therapeutic targets for the management of glaucoma.
  18. Mohd Lazaldin MA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Mohd Ismail N
    Eur J Neurosci, 2020 06;51(12):2394-2411.
    PMID: 31883161 DOI: 10.1111/ejn.14662
    Brain-derived neurotrophic factor (BDNF) could be considered a potential neuroprotective therapy in amyloid beta (Aβ)-associated retinal and optic nerve degeneration. Hence, in this study we investigated the neuroprotective effect of BDNF against Aβ1-40-induced retinal and optic nerve injury. In this study, exposure to Aβ1-40 was associated with retinal and optic nerve injury. TUNEL staining showed significant reduction in the apoptotic cell count in the BDNF-treated group compared with Aβ1-40 group. H&E-stained retinal sections also showed a striking reduction in neuronal cells in the ganglion cell layer (GCL) of retinas fourteen days after Aβ1-40 exposure. By contrast, number of retinal cells was preserved in the retinas of BDNF-treated animals. After Aβ1-40 exposure, visible axonal swelling was observed in optic nerve sections. However, the BDNF-treated group showed fewer changes in optic nerve; axonal swelling was less frequent and less marked. In the present study, exposure to Aβ was associated with oxidative stress, whereas levels of retinal glutathione (GSH), superoxide dismutase (SOD) and catalase were significantly increased in BDNF-treated than in Aβ1-40-treated rats. Both visual object recognition tests using an open-field arena and a Morris water maze showed that BDNF improved rats' ability to recognise visual cues (objects with different shapes) after Aβ1-40 exposure, thus demonstrating that the visual performance of rats was relatively preserved following BDNF treatment. In conclusion, intravitreal treatment with BDNF prevents Aβ1-40-induced retinal cell apoptosis and axon loss in the optic nerve of rats by reducing retinal oxidative stress and restoring retinal BDNF levels.
  19. Lambuk L, Jafri AJ, Arfuzir NN, Iezhitsa I, Agarwal R, Rozali KN, et al.
    Neurotox Res, 2017 01;31(1):31-45.
    PMID: 27568334 DOI: 10.1007/s12640-016-9658-9
    Glutamate excitotoxicity plays a major role in the loss of retinal ganglion cells (RGCs) in glaucoma. The toxic effects of glutamate on RGCs are mediated by the overstimulation of N-methyl-D-aspartate (NMDA) receptors. Accordingly, NMDA receptor antagonists have been suggested to inhibit excitotoxicity in RGCs and delay the progression and visual loss in glaucoma patients. The purpose of the present study was to examine the potential neuroprotective effect of Mg acetyltaurate (MgAT) on RGC death induced by NMDA. MgAT was proposed mainly due to the combination of magnesium (Mg) and taurine which may provide neuroprotection by dual mechanisms of action, i.e., inhibition of NMDA receptors and antioxidant effects. Rats were divided into 5 groups and were given intravitreal injections. Group 1 (PBS group) was injected with vehicle; group 2 (NMDA group) was injected with NMDA while groups 3 (pre-), 4 (co-), and 5 (post-) treatments were injected with MgAT, 24 h before, in combination or 24 h after NMDA injection respectively. NMDA and MgAT were injected in PBS at doses 160 and 320 nmol, respectively. Seven days after intravitreal injection, the histological changes in the retina were evaluated using hematoxylin & eosin (H&E) staining. Optic nerves were dissected and stained in Toluidine blue for grading on morphological neurodegenerative changes. The extent of apoptosis in retinal tissue was assessed by TUNEL assay and caspase-3 immunohistochemistry staining. The estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors and caspase-3 activity in retina was done using enzyme-linked immunosorbent assay (ELISA) technique. The retinal morphometry showed reduced thickness of ganglion cell layer (GCL) and reduction in the number of retinal cells in GCL in NMDA group compared to the MgAT-treated groups. TUNEL and caspase-3 staining showed increased number of apoptotic cells in inner retina. The results were further corroborated by the estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors, and caspase-3 activity in retina. In conclusion, current study revealed that intravitreal MgAT prevents retinal and optic nerve damage induced by NMDA. Overall, our data demonstrated that the pretreatment with MgAT was more effective than co- and posttreatment. This protective effect of MgAT against NMDA-induced retinal cell apoptosis could be attributed to the reduction of retinal oxidative stress and activation of BDNF-related neuroprotective mechanisms.
  20. Agarwal R, Iezhitsa IN, Agarwal P, Spasov AA
    Magnes Res, 2013 Jan-Feb;26(1):2-8.
    PMID: 23708888 DOI: 10.1684/mrh.2013.0336
    Senile cataract is the most common cause of bilateral blindness and results from the loss of transparency of the lens. Maintenance of the unique tissue architecture of the lens is vital for keeping the lens transparent. Membrane transport mechanisms utilizing several magnesium (Mg)-dependent ATPases, play an important role in maintaining lens homeostasis. Therefore, in Mg-deficiency states, ATPase dysfunctions lead to intracellular depletion of K(+) and accumulation of Na(+) and Ca(2+). High intracellular Ca(2+) causes activation of the enzyme calpain II, which leads to the denaturation of crystallin, the soluble lens protein required for maintaining the transparency of the lens. Mg deficiency also interferes with ATPase functions by causing cellular ATP depletion. Furthermore, Mg deficiency enhances lenticular oxidative stress by increased production of free radicals and depletion of antioxidant defenses. Therefore, Mg supplementation may be of therapeutic value in preventing the onset and progression of cataracts in conditions associated with Mg deficiency.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links