Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Che HX, Yeap SP, Osman MS, Ahmad AL, Lim J
    ACS Appl Mater Interfaces, 2014 Oct 8;6(19):16508-18.
    PMID: 25198872 DOI: 10.1021/am5050949
    The synthesis of nanocomposite with controlled surface morphology plays a key role for pollutant removal from aqueous environments. The influence of the molecular size of the polyelectrolyte in synthesizing silica-iron oxide core-shell nanocomposite with open shell structure was investigated by using dynamic light scattering, atomic force microscopy, and quartz crystal microbalance with dissipation (QCM-D). Here, poly(diallydimethylammonium chloride) (PDDA) was used to promote the attachment of iron oxide nanoparticles (IONPs) onto the silica surface to assemble a nanocomposite with magnetic and catalytic bifunctionality. High molecular weight PDDA tended to adsorb on silica colloid, forming a more extended conformation layer than low molecular weight PDDA. Subsequent attachment of IONPs onto this extended PDDA layer was more randomly distributed, forming isolated islands with open space between them. By taking amoxicillin, an antibiotic commonly found in pharmaceutical waste, as the model system, better removal was observed for silica-iron oxide nanocomposite with a more extended open shell structure.
  2. Zaulkiflee ND, Ahmad AL, Sugumaran J, Lah NFC
    ACS Omega, 2020 Sep 22;5(37):23892-23897.
    PMID: 32984709 DOI: 10.1021/acsomega.0c03142
    The purpose of this study is to explore the emulsion liquid membrane stability for acetaminophen (ACTP) removal from aqueous solution. In this work, the membrane phase was prepared by dissolving trioctylamine (TOA) with kerosene and Span80. The stability of the emulsion in terms of emulsion size, membrane breakage, and its efficiency in removing ACTP was considered for the optimization of parameters. Investigation on the stability of emulsion was carried out by manipulating the concentration of stripping agent, agitation speed, extraction time, and treat ratio. The best condition to produce a very stable emulsion was achieved at 0.1 M of stripping agent concentration, with 300 rpm of agitation speed for 3 min of extraction time with a treat ratio of 3:1. Eighty-five percent of ACTP successfully stripped into the emulsion with minimum membrane breakage of 0.17% through this experiment.
  3. Mohd Ramli MR, Ahmad AL, Leo CP
    ACS Omega, 2021 Feb 23;6(7):4609-4618.
    PMID: 33644568 DOI: 10.1021/acsomega.0c05107
    Membrane distillation (MD) is an attractive technology for the separation of highly saline water used with a polytetrafluoroethylene (PTFE) hollow fiber (HF) membrane. A hydrophobic coating of low-density polyethylene (LDPE) coats the outer surface of the PTFE membrane to resolve membrane wetting as well as increase membrane permeability flux and salt rejection, a critical problem regarding the MD process. LDPE concentrations in coating solution have been studied and optimized. Consequently, the LDPE layer altered membrane morphology by forming a fine nanostructure on the membrane surface that created a hydrophobic layer, a high roughness of membrane, and a uniform LDPE network. The membrane coated with different concentrations of LDPE exhibited high water contact angles of 135.14 ± 0.24 and 138.08 ± 0.01° for membranes M-3 and M-4, respectively, compared to the pristine membrane. In addition, the liquid entry pressure values of LDPE-incorporated PTFE HF membranes (M-1 to M-5) were higher than that of the uncoated membrane (M-0) with a small decrease in the percentage of porosity. The M-3 and M-4 membranes demonstrated higher flux values of 4.12 and 3.3 L m-2 h-1 at 70 °C, respectively. On the other hand, the water permeation flux of 1.95 L m-2 h-1 for M-5 further decreased when LDPE concentration is increased.
  4. Mohd Ramli MR, Ahmad AL, Oluwasola EI, Leo CP
    ACS Omega, 2021 Oct 05;6(39):25201-25210.
    PMID: 34632179 DOI: 10.1021/acsomega.1c02887
    Membrane distillation (MD) is a thermal technology for the desalination process that requires a hydrophobic microporous membrane to ensure that the membrane can maintain the liquid-vapor interface. This work aims to enhance the water permeation flux of the previously coated membrane by modifying the surface of the polytetrafluoroethylene hollow fiber (PTFE HF) membrane with a selected non-solvent such as acetone, cyclohexanone, and ethanol in low-density polyethylene as a polymeric coating solution. However, the modification using acetone and cyclohexanone solvents was unsuccessful because a reduction in membrane hydrophobicity was observed. The modified PTFE HF membrane with ethanol content exhibits high wetting resistance with a high water contact angle, which can withstand pore wetting during the direct contact MD process. Since MD operates under a lower operating temperature range (50-90 °C) compared to the conventional distillation, we herein demonstrated that higher flux could be obtained at 7.26 L m-2 h-1. Thus, the process is economically feasible because of lower energy consumption. Performance evaluation of the modified PTFE HF membrane showed a high rejection of 99.69% for sodium chloride (NaCl), indicating that the coated membrane preferentially allowed only water vapor to pass through.
  5. Chew TL, Ahmad AL, Bhatia S
    Adv Colloid Interface Sci, 2010 Jan 15;153(1-2):43-57.
    PMID: 20060956 DOI: 10.1016/j.cis.2009.12.001
    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
  6. Lim GW, Lim JK, Ahmad AL, Chan DJ
    Anal Bioanal Chem, 2016 Mar;408(8):2083-93.
    PMID: 26842746 DOI: 10.1007/s00216-015-9298-6
    The direct correlation between disease and lysozyme (LYZ) levels in human body fluids makes the sensitive and convenient detection of LYZ the focus of scientific research. Fluorescent molecularly imprinted polymer has emerged as a new alternative for LYZ detection in order to resolve the limitation of immunoassays, which are expensive, unstable, require complex preparation, and are time consuming. In this study, a novel fluorescence molecularly imprinted polymer based on Navicula sp. frustules (FITC-MIP) has been synthesized via post-imprinting treatment for LYZ detection. Navicula sp. frustules were used as supported material because of their unique properties of moderate surface area, reproducibility, and biocompatibility, to address the drawbacks of nanoparticle core material with low adsorption capacity. The FITC acts as recognition signal and optical readout, whereas MIP provides LYZ selectivity. The synthesized FITC-MIP showed a response time as short as 5 min depending on the concentration of LYZ. It is found that the LYZ template can significantly quench the fluorescence intensity of FITC-MIP linearly within a concentration range of 0 to 0.025 mg mL(-1), which is well described by Stern-Volmer equation. The FITC-MIP can selectively and sensitively detect down to 0.0015 mg mL(-1) of LYZ concentration. The excellent sensing performance of FITC-MIP suggests that FITC-MIP is a potential biosensor in clinical diagnosis applications.
  7. Lee PY, Abang Taha AB, Lin K, Ghazali SR, Syed Ahmad Al-Mashoor SH
    Asia Pac Fam Med, 2007;6(1).
    Aims: To evaluate the utilization of complementary and alternative medicine (CAM) in Kuching, Sarawak, Malaysia Methods: This was a cross-sectional study of patients who attended three randomly selected primary care clinics over 4 months from January to April 2004. Results: A total of 198 patients were recruited. One hundred and eighty-one (91.4%) patients agreed to participate by answering the anonymous questionnaire. Results: Ninety (51.4%) patients used CAM of which 43 (47.8%) patients used more than one type of CAM. Utilization rates of CAM were found to be associated with employment status but not with other socio-demographic factors. The common types of alternative medicine used were massage (n = 63; 36.2%) and herbal medicine (n = 44; 25.1%). Forty-two (46%) of the CAM users, used CAM for the problems that led to their current clinic visit. Thirty-four (37.8%) were using alternative and modern medicine at the same time. The reasons for CAM usage given by about half of the patients were that CAM was more effective and better for emotional or mental health problems. Conclusions: Usage of CAM was common in patients who visited primary care clinics. It is important to recognize this fact as combined use of CAM can create potentially dangerous interactions with pharmacotherapies Key words: complementary and alternative medicine (CAM), primary care
  8. Mohamad EMW, Kaundan MK, Hamzah MR, Azlan AA, Ayub SH, Tham JS, et al.
    BMC Public Health, 2020 Apr 28;20(1):580.
    PMID: 32345285 DOI: 10.1186/s12889-020-08704-7
    BACKGROUND: The European Health Literacy Survey Questionnaire (HLS-EU-Q47) is becoming a widely used tool to measure health literacy (HL), including in Malaysia. There are efforts to reduce the 47-item scale to parsimonious short item scales that still reflect the assumptions and requirements of the conceptual model. This study used confirmatory factor analysis to reduce the 47-item scale to a short scale that can offer a feasible HL screening tool with sufficient psychometric properties.

    METHODS: A cross-sectional survey was conducted on the Malaysian population based on ethnic distribution to ensure that the short version instrument reflects the country's varied ethnicities. The survey was administered by well-trained interviewers working for the Ministry of Health Malaysia. A total of 866 responses were obtained. Data was analysed using multi-factorial confirmatory factor analysis (CFA) with categorical variables.

    RESULTS: The analysis resulted in a satisfactory 18-item model. There were high correlations among the 18 items. The internal consistency reliability was robust, with no floor/ceiling effects. These results represented equivalence and consistency among the responses to items, suggesting that these items were homogenous in measuring Malaysian health literacy. The strong convergent and discriminant validity of the model makes the proposed 18 items a suitable short version of the health literacy instrument for Malaysia.

    CONCLUSIONS: The researchers propose the 18-item instrument to be named HLS-M-Q18. This short version instrument may be used in measuring health literacy in Malaysia as it achieved robust reliability, structural validity and construct validity that fulfilled goodness-of-fit criteria.
  9. Low SC, Ahmad AL, Ideris N, Ng QH
    Bioresour Technol, 2012 Jun;113:219-24.
    PMID: 22153291 DOI: 10.1016/j.biortech.2011.11.048
    The aim of this study was to explore the utilization of polymeric membrane for bio-sensing application in most efficient and rapid way. Customization of membrane formulation via phase separation study to modify its morphologies and properties enable the detection of different pathogens in a specific manner. Experimental findings (FESEM, through-pore distribution, porosity, capillary flow test and protein binding test) verified the predictions of faster capillary flow time and higher membrane's protein binding by the addition of cellulose acetate and nitrocellulose to the membrane casting dope, respectively. Throughout the phase separation study, the potential phase behavior was investigated, which was correlating various membrane structures to its performances for potential pathogens detection in water.
  10. Tan IA, Ahmad AL, Hameed BH
    Bioresour Technol, 2009 Feb;100(3):1494-6.
    PMID: 18809316 DOI: 10.1016/j.biortech.2008.08.017
    This study investigated the adsorption potential of oil palm shell-based activated carbon to remove 2,4,6-trichlorophenol from aqueous solution using fixed-bed adsorption column. The effects of 2,4,6-trichlorophenol inlet concentration, feed flow rate and activated carbon bed height on the breakthrough characteristics of the adsorption system were determined. The regeneration efficiency of the oil palm shell-based activated carbon was evaluated using ethanol desorption technique. Through ethanol desorption, 96.25% of the adsorption sites could be recovered from the regenerated activated carbon.
  11. Rahman SH, Choudhury JP, Ahmad AL, Kamaruddin AH
    Bioresour Technol, 2007 Feb;98(3):554-9.
    PMID: 16647852
    Oil palm empty fruit bunch fiber is a lignocellulosic waste from palm oil mills. It is a potential source of xylose which can be used as a raw material for production of xylitol, a high value product. The increasing interest on use of lignocellulosic waste for bioconversion to fuels and chemicals is justifiable as these materials are low cost, renewable and widespread sources of sugars. The objective of the present study was to determine the effect of H(2)SO(4) concentration, reaction temperature and reaction time for production of xylose. Batch reactions were carried out under various reaction temperature, reaction time and acid concentrations and Response Surface Methodology (RSM) was followed to optimize the hydrolysis process in order to obtain high xylose yield. The optimum reaction temperature, reaction time and acid concentration found were 119 degrees C, 60 min and 2%, respectively. Under these conditions xylose yield and selectivity were found to be 91.27% and 17.97 g/g, respectively.
  12. Zulkali MM, Ahmad AL, Norulakmal NH
    Bioresour Technol, 2006 Jan;97(1):21-5.
    PMID: 15963716
    The effects of initial concentration of lead, temperature, biomass loading and pH were investigated for an optimized condition of lead uptake from the aqueous solution. The optimization process was analyzed using Central Composite Face-Centered Experimental Design in Response Surface Methodology (RSM) by Design Expert Version 5.0.7 (StatEase, USA). The design was employed to derive a statistical model for the effect of parameters studied on the removal of lead ion from aqueous solution. The coefficient of determination, R2 was found to be 92.36%. The initial concentration of 50.0 mg/L, temperature of 60 degrees C, biomass loading of 0.2 g and pH of 5.0 had been found to be the optimum conditions for the maximum uptake of lead ions in 98.11% batch mode. Under the optimum conditions, the lead uptake was attained to be circa 8.60 mg/g.
  13. Ahmad AL, Oh PC, Abd Shukor SR
    Biotechnol Adv, 2009 May-Jun;27(3):286-96.
    PMID: 19500550 DOI: 10.1016/j.biotechadv.2009.01.003
    Over the past decade, L-homophenylalanine is extensively used in the pharmaceutical industry as a precursor for production of angiotensin-converting enzyme (ACE) inhibitor, which possesses significant clinical application in the management of hypertension and congestive heart failure (CHF). A number of chemical methods have been reported thus far for the synthesis of L-homophenylalanine. However, chemical methods generally suffer from process complexity, high cost, and environmental pollution. On the other hand, enantiomerically pure L-homophenylalanine can be obtained elegantly and efficiently by employing biocatalytic methods, where it appears to be the most attractive process in terms of potential industrial applications, green chemistry and sustainability. Herein we review the biocatalytic synthesis of vital L-homophenylalanine as potentially useful intermediate in the production of pharmaceutical drugs in environmentally friendly conditions, using membrane bioreactor for sustainable biotransformation process. One envisages the future prospects of developing an integrated membrane bioreactor system with improved performance for L-homophenylalanine production.
  14. Sanchez Bornot JM, Wong-Lin K, Ahmad AL, Prasad G
    Brain Topogr, 2018 11;31(6):895-916.
    PMID: 29546509 DOI: 10.1007/s10548-018-0640-0
    The brain's functional connectivity (FC) estimated at sensor level from electromagnetic (EEG/MEG) signals can provide quick and useful information towards understanding cognition and brain disorders. Volume conduction (VC) is a fundamental issue in FC analysis due to the effects of instantaneous correlations. FC methods based on the imaginary part of the coherence (iCOH) of any two signals are readily robust to VC effects, but neglecting the real part of the coherence leads to negligible FC when the processes are truly connected but with zero or π-phase (modulus 2π) interaction. We ameliorate this issue by proposing a novel method that implements an envelope of the imaginary coherence (EIC) to approximate the coherence estimate of supposedly active underlying sources. We compare EIC with state-of-the-art FC measures that included lagged coherence, iCOH, phase lag index (PLI) and weighted PLI (wPLI), using bivariate autoregressive and stochastic neural mass models. Additionally, we create realistic simulations where three and five regions were mapped on a template cortical surface and synthetic MEG signals were obtained after computing the electromagnetic leadfield. With this simulation and comparison study, we also demonstrate the feasibility of sensor FC analysis using receiver operating curve analysis whilst varying the signal's noise level. However, these results should be interpreted with caution given the known limitations of the sensor-based FC approach. Overall, we found that EIC and iCOH demonstrate superior results with most accurate FC maps. As they complement each other in different scenarios, that will be important to study normal and diseased brain activity.
  15. Oladoja NA, Adelagun RO, Ahmad AL, Unuabonah EI, Bello HA
    Colloids Surf B Biointerfaces, 2014 May 1;117:51-9.
    PMID: 24632030 DOI: 10.1016/j.colsurfb.2014.02.006
    A novel adsorbent, magnetic, macro-reticulated cross-linked chitosan (MRC) was synthesised for the removal of tetracycline (TC) from water using a source of biogenic waste (gastropod shells) as a pore-forming agent. The insertion of crosslinks into the chitosan frame was confirmed by FTIR analysis, while the stability of the MRC was demonstrated via a stability test performed in an acidic solution. The enhanced porosity of the MRC was confirmed by the evaluation of its porosity, a swelling test and the determination of its specific surface area. The time-concentration profile of the sorption of TC onto the MRC demonstrated that equilibrium was attained relatively quickly (120 min), and the data obtained fitted a pseudo second order (r(2)>0.99) kinetic equation better than a pseudo first order or reversible first order kinetic equation. The optimisation of process variables indicated that the sorption of TC onto the MRC was favoured at a low solution pH and that the presence of organics (simulated by the addition of humic acid) negatively impacted the magnitude of TC removal. The area of coverage of TC on the MRC (2.51 m(2)/g) was low compared to the specific surface area of the MRC (47.95 m(2)/g). The value of the calculated energy of adsorption of TC onto the MRC was 100 kJ/mol, which is far above the range of 1-16 kJ/mol stipulated for physical adsorption.
  16. Low SC, Shaimi R, Thandaithabany Y, Lim JK, Ahmad AL, Ismail A
    Colloids Surf B Biointerfaces, 2013 Oct 1;110:248-53.
    PMID: 23732801 DOI: 10.1016/j.colsurfb.2013.05.001
    Protein adsorption onto membrane surfaces is important in fields related to separation science and biomedical research. This study explored the molecular interactions between protein, bovine serum albumin (BSA), and nitrocellulose films (NC) using electrokinetic phenomena and the effects of these interactions on the streaming potential measurements for different membrane pore morphologies and pH conditions. The data were used to calculate the streaming ratios of membranes-to-proteins and to compare these values to the electrostatic or hydrophobic attachment of the protein molecules onto the NC membranes. The results showed that different pH and membrane pore morphologies contributes to different protein adsorption mechanisms. The protein adsorption was significantly reduced under conditions where the membrane and protein have like-charges due to electrostatic repulsion. At the isoelectric point (IEP) of the protein, the repulsion between the BSA and the NC membrane was at the lowest; thus, the BSA could be easily attached onto the membrane/solution interface. In this case, the protein was considered to be in a compact layer without intermolecular protein repulsions.
  17. Albazee E, Alenezi A, Alenezi M, Alabdulhadi R, Alhubail RJ, Ahmad Al Sadder K, et al.
    Cureus, 2023 Feb;15(2):e34734.
    PMID: 36755770 DOI: 10.7759/cureus.34734
    Hemorrhoidectomy is one of the most common surgical interventions to remove the third and fourth degrees of prolapse hemorrhoid. We carried out this systematic review and meta-analysis of the randomized controlled trials (RCTs) to comprehensively evaluate the efficacy of harmonic scalpel (HS) versus bipolar diathermy (BD) methods in terms of decreasing intraoperative and postoperative morbidities among patients undergoing hemorrhoidectomy. Suitable citations were found utilizing digital medical sources, including the CENTRAL, Web of Science, PubMed, Scopus, and Google Scholar, from inception until December 2022. Only RCTs that matched the inclusion requirements were selected. We used the updated Cochrane risk of bias (ROB) tool (version 2) to assess the quality of the involved citations. The Review Manager (version 5.4 for Windows) was used to perform the pooled analysis. Data were pooled and reported as mean difference (MD) or risk ratio (RR) with a 95% confidence interval (CI) in random-effects models. Overall, there was no significant difference between HS and BD in terms of decreasing intraoperative morbidities like operative time, intraoperative blood loss, mean duration of hospital stay, and mean duration of first bowel movement (P>0.05). Similarly, the rate of postoperative complications like pain, bleeding, urinary retention, anal stenosis, flatus incontinence, and wound edema; was similar in both groups with no significant difference (P>0.05). In conclusion, our pooled analysis revealed there was no substantial difference between HS and BD in terms of intraoperative and postoperative endpoints. Additional RCTs with larger sample sizes are needed to consolidate the power and quality of the presented evidence.
  18. Wan Jusoh WZA, Abdul Rahman S, Ahmad AL, Mohd Mokhtar N
    Data Brief, 2019 Jun;24:103910.
    PMID: 31193576 DOI: 10.1016/j.dib.2019.103910
    This paper focus to examine the best molecular interaction between Polyamide Thin Film Composite (PA TFC) layers with different properties of the support membrane. The support membrane of Nylon 66 (N66) and Polyvinylidene fluoride (PVDF) was chosen to represent the hydrophilic and hydrophobic model respectively in the Molecular Dynamic (MD) simulation. The Condensed-Phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) force field was used with the total simulation runs were set 1000 picoseconds run production ensembles. The temperature and pressure set for both ensembles were 298 K and 1 atm respectively. The validity of our model densities data was check and calculated where the deviation must be less than 6%. The comparison between hydrophobic and hydrophilic of the support membrane data was examined by the distance and magnitude of intensity of the Radial Distribution Function (RDF's) trends.
  19. Al-Jarallah M, Rajan R, Saber AA, Pan J, Al-Sultan AT, Abdelnaby H, et al.
    EJHaem, 2021 Aug;2(3):335-339.
    PMID: 34226901 DOI: 10.1002/jha2.195
    This study is to estimate in-hospital mortality in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients stratified by hemoglobin (Hb) level. Patients were stratified according to hemoglobin level into two groups, that is, Hb <100 g/L and Hb >100 g/L. A total of 6931 patients were included. Of these, 6377 (92%) patients had hemoglobin levels >100 g/L. The mean age was 44 ± 17 years, and 66% of the patients were males. The median length of overall hospital stay was 13 days [2; 31]. The remaining 554 (8%) patients had a hemoglobin level <100 g/L. Overall mortality was 176 patients (2.54%) but was significantly higher in the group with hemoglobin levels <100 g/L (124, 22.4%) than in the group with hemoglobin levels >100 g/L (52, 0.82%). Risk factors associated with increased mortality were determined by multivariate analysis. The Kaplan-Meier survival analysis showed hemoglobin as a predictor of mortality. Cox proportional hazards regression coefficients for hemoglobin for the HB ≤ 100 category of hemoglobin were significant, B = 2.79, SE = 0.17, and HR = 16.34, p 
  20. Ahmad AL, Ismail S, Bhatia S
    Environ Sci Technol, 2005 Apr 15;39(8):2828-34.
    PMID: 15884382
    The coagulation-flocculation process incorporated with membrane separation technology will become a new approach for palm oil mill effluent (POME) treatment as well as water reclamation and reuse. In our current research, a membrane pilot plant has been used for POME treatment where the coagulation-flocculation process plays an important role as a pretreatment process for the mitigation of membrane fouling problems. The pretreated POME with low turbidity values and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. Therefore, treatment optimization to serve these purposes was performed using jar tests and applying a response surface methodology (RSM) to the results. A 2(3) full-factorial central composite design (CCD) was chosen to explain the effect and interaction of three factors: coagulant dosage, flocculent dosage, and pH. The CCD is successfully demonstrated to efficiently determine the optimized parameters, where 78% of water recovery with a 20 NTU turbidity value can be obtained at the optimum value of coagulant dosage, flocculent dosage, and pH at 15 000 mg/L, 300 mg/L, and 6, respectively.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links