Displaying publications 1 - 20 of 513 in total

Abstract:
Sort:
  1. Zhong W, Osther P, Pearle M, Choong S, Mazzon G, Zhu W, et al.
    World J Urol, 2024 Mar 25;42(1):189.
    PMID: 38526675 DOI: 10.1007/s00345-024-04816-6
    BACKGROUND: The stone burden based management strategy reported in the guidelines published by different associations is well known for a long time. Staghorn calculi, representing the largest burden and most complex stones, is one of the most challenging cases to practicing urologists in clinical practice. The International Alliance of Urolithiasis (IAU) has released a series of guidelines on the management of urolithiasis.

    PURPOSE: To develop a series of recommendations for the contemporary management management of staghorn calculi and to provide a clinical framework for urologists treating patients with these complex stones.

    METHODS: A comprehensive literature search for articles published in English between 01/01/1976 and 31/12/2022 in the PubMed, OVID, Embase and Medline database is performed. A series of recommendations are developed and individually graded following the review of literature and panel discussion.

    RESULTS: The definition, pathogenesis, pathophysiology, preoperative evaluation, intraoperative treatment strategies and procedural advice, early postoperative management, follow up and prevention of stone recurrence are summarized in the present document.

    CONCLUSION: A series of recommendations regarding the management of staghorn calculi, along with related commentary and supporting documentation offered in the present guideline is intended to provide a clinical framework for the practicing urologists in the management of staghorn calculi.

  2. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Mar 22;132(12):121901.
    PMID: 38579207 DOI: 10.1103/PhysRevLett.132.121901
    The observation of WWγ production in proton-proton collisions at a center-of-mass energy of 13 TeV with an integrated luminosity of 138  fb^{-1} is presented. The observed (expected) significance is 5.6 (5.1) standard deviations. Events are selected by requiring exactly two leptons (one electron and one muon) of opposite charge, moderate missing transverse momentum, and a photon. The measured fiducial cross section for WWγ is 5.9±0.8(stat)±0.8(syst)±0.7(modeling)  fb, in agreement with the next-to-leading order quantum chromodynamics prediction. The analysis is extended with a search for the associated production of the Higgs boson and a photon, which is generated by a coupling of the Higgs boson to light quarks. The result is used to constrain the Higgs boson couplings to light quarks.
  3. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Mar 15;132(11):111901.
    PMID: 38563916 DOI: 10.1103/PhysRevLett.132.111901
    A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at sqrt[s]=13  TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135  fb^{-1}. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of 6638_{-38}^{+43}(stat)_{-31}^{+16}(syst)  MeV. Another structure with even higher significance is found at a mass of 6847_{-28}^{+44}(stat)_{-20}^{+48}(syst)  MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134_{-25}^{+48}(stat)_{-15}^{+41}(syst)  MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.
  4. Anwar A, Khan NA, Alharbi AM, Alhazmi A, Siddiqui R
    Int Ophthalmol, 2024 Mar 15;44(1):140.
    PMID: 38491335 DOI: 10.1007/s10792-024-03062-4
    Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.
  5. Emmy HKI, Boleh NC, Ali MS, Jakiwa J, Mardiyati NL, Ahmad MF
    Med J Malaysia, 2024 Mar;79(Suppl 1):134-139.
    PMID: 38555898
    INTRODUCTION: Night eating is a very common dietary behaviour among university students. This study aims to investigate the relationship between night eating and BMI, stress, sleep quality and duration of study among university students.

    MATERIALS AND METHODS: A total of 385 university students including foundation and undergraduate students took part in this study. Self-administered online surveys were used to obtain sociodemographic data, and anthropometry measurements including weight and height, night eating during studying, duration of the study, opinion on eating and academic performance, sleep quality, level of depression, anxiety, and stress of the respondents. Questionnaires were validated and IBM SPSS Statistics Software version 26.0 was used to analyse categorical and continuous variables.

    RESULTS: The findings showed that there was an association between night eaters and coffee consumption with BMI (p<0.001) and sleep quality (p<0.05). However, there was no association (p>0.05) found between the types of food eaten during night studying and the mean duration of the study. The results showed drinking coffee had an association with depression, anxiety, and stress (p<0.05) among Malaysian university students.

    CONCLUSION: Coffee consumption was common among undergraduate students during studying. Awareness of the risk of overconsumption of caffeine intake should be implemented in the future. However, this study did not include all types of food choices and drinks. Thus, frequency of eating energy dense food during night studying among students should be conducted in the future.

  6. Talab F, Alam A, Zainab, Ullah S, Elhenawy AA, Shah SAA, et al.
    J Biomol Struct Dyn, 2024 Feb 22.
    PMID: 38385366 DOI: 10.1080/07391102.2024.2319677
    This research work reports the synthesis of new derivatives of the hydrazone Schiff bases (1-17) based on polyhydroquinoline nucleus through multistep reactions. HR-ESIMS,1H- and 13C-NMR spectroscopy were used to structurally infer all of the synthesized compounds and lastly evaluated for prolyl oligopeptidase inhibitory activity. All the prepared products displayed good to excellent inhibitory activity when compared with standard z-prolyl-prolinal. Three derivatives 3, 15 and 14 showed excellent inhibition with IC50 values 3.21 ± 0.15 to 5.67 ± 0.18 µM, while the remaining 12 compounds showed significant activity. Docking studies indicated a good correlation with the biochemical potency of compounds estimated in the in-vitro test and showed the potency of compounds 3, 15 and 14. The MD simulation results confirmed the stability of the most potent inhibitors 3, 15 and 14 at 250 ns using the parameters RMSD, RMSF, Rg and number of hydrogen bonds. The RMSD values indicate the stability of the protein backbone in complex with the inhibitors over the simulation time. The RMSF values of the binding site residues indicate that the potent inhibitors contributed to stabilizing these regions of the protein, through formed stable interactions with the protein. The Rg. analysis assesses the overall size and compactness of the complexes. The maintenance of stable hydrogen bonds suggests the existence of favorable binding interactions. SASA analysis suggests that they maintained stable conformations without large-scale exposure to the solvent. These results indicate that the ligand-protein interactions are stable and could be exploited to design new drugs for disease treatment.Communicated by Ramaswamy H. Sarma.
  7. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Feb 09;132(6):061801.
    PMID: 38394587 DOI: 10.1103/PhysRevLett.132.061801
    The first search for scalar leptoquarks produced in τ-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb^{-1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength.
  8. Rojas-Castillo OA, Kepfer Rojas S, Juen L, Montag LFA, Carvalho FG, Mendes TP, et al.
    Conserv Biol, 2024 Feb;38(1):e14172.
    PMID: 37650444 DOI: 10.1111/cobi.14172
    The expansion of oil palm plantations has led to land-use change and deforestation in the tropics, which has affected biodiversity. Although the impacts of the crop on terrestrial biodiversity have been extensively reviewed, its effects on freshwater biodiversity remain relatively unexplored. We reviewed the research assessing the impacts of forest-to-oil palm conversion on freshwater biota and the mitigating effect of riparian buffers on these impacts. We searched for studies comparing taxa richness, species abundance, and community composition of macroinvertebrates, amphibians, and fish in streams in forests (primary and disturbed) and oil palm plantations with and without riparian buffers. Then, we conducted a meta-analysis to quantify the overall effect of the land-use change on the 3 taxonomic groups. Twenty-nine studies fulfilled the inclusion criteria. On average, plantations lacking buffers hosted 44% and 19% fewer stream taxa than primary and disturbed forests, respectively. Stream taxa on plantations with buffers were 24% lower than in primary forest and did not differ significantly from disturbed forest. In contrast, stream community composition differed between forests and plantations regardless of the presence of riparian buffers. These differences were attributed to agrochemical use and altered environmental conditions in the plantations, including temperature changes, worsened water conditions, microhabitat loss, and food and shelter depletion. On aggregate, abundance did not differ significantly among land uses because increases in generalist species offset the population decline of vulnerable forest specialists in the plantation. Our results reveal significant impacts of forest-to-oil palm conversion on freshwater biota, particularly taxa richness and composition (but not aggregate abundance). Although preserving riparian buffers in the plantations can mitigate the loss of various aquatic species, it cannot conserve primary forest communities. Therefore, safeguarding primary forests from the oil palm expansion is crucial, and further research is needed to address riparian buffers as a promising mitigation strategy in agricultural areas.
  9. Simau FA, Ahmed U, Khan KM, Khan NA, Siddiqui R, Alharbi AM, et al.
    Parasitol Res, 2024 Jan 31;123(2):117.
    PMID: 38294565 DOI: 10.1007/s00436-024-08131-2
    The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.
  10. Bheel N, Kumar S, Kirgiz MS, Ali M, Almujibah HR, Ahmad M, et al.
    Heliyon, 2024 Jan 30;10(2):e24313.
    PMID: 38298623 DOI: 10.1016/j.heliyon.2024.e24313
    The use of supplementary cementitious materials has been widely accepted due to increasing global carbon emissions resulting from demand and the consequent production of Portland cement. Moreover, researchers are also working on complementing the strength deficiencies of concrete; fiber reinforcement is one of those techniques. This study aims to assess the influence of recycling wheat straw ash (WSA) as cement replacement material and coir/coconut fibers (CF) as reinforcement ingredients together on the mechanical properties, permeability and embodied carbon of concrete. A total of 255 concrete samples were prepared with 1:1.5:3 mix proportions at 0.52 water-cement ratio and these all-concrete specimens were cured for 28 days. It was revealed that the addition of 10 % WSA and 2 % CF in concrete were recorded the compressive, splitting tensile and flexural strengths by 33 MPa, 3.55 MPa and 5.16 MPa which is greater than control mix concrete at 28 days respectively. Moreover, it was also observed that the permeability of concrete incorporating 4 % of coir fiber and 20 % of WSA was reduced by 63.40 % than that of the control mix after 28 days which can prevent the propagation of major and minor cracks. In addition, the embodied carbon of concrete is getting reduced when the replacement level of cement with WSA along with CF increases in concrete. Furthermore, based on the results obtained, the optimum amount of WSA was suggested to be 10 % and that of coir fiber reinforcement was suggested to be 2 % for improved results.
  11. Abdullah GMS, Ahmad M, Babur M, Badshah MU, Al-Mansob RA, Gamil Y, et al.
    Sci Rep, 2024 Jan 28;14(1):2323.
    PMID: 38282061 DOI: 10.1038/s41598-024-52825-7
    The present research employs new boosting-based ensemble machine learning models i.e., gradient boosting (GB) and adaptive boosting (AdaBoost) to predict the unconfined compressive strength (UCS) of geopolymer stabilized clayey soil. The GB and AdaBoost models were developed and validated using 270 clayey soil samples stabilized with geopolymer, with ground-granulated blast-furnace slag and fly ash as source materials and sodium hydroxide solution as alkali activator. The database was randomly divided into training (80%) and testing (20%) sets for model development and validation. Several performance metrics, including coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and mean squared error (MSE), were utilized to assess the accuracy and reliability of the developed models. The statistical results of this research showed that the GB and AdaBoost are reliable models based on the obtained values of R2 (= 0.980, 0.975), MAE (= 0.585, 0.655), RMSE (= 0.969, 1.088), and MSE (= 0.940, 1.185) for the testing dataset, respectively compared to the widely used artificial neural network, random forest, extreme gradient boosting, multivariable regression, and multi-gen genetic programming based models. Furthermore, the sensitivity analysis result shows that ground-granulated blast-furnace slag content was the key parameter affecting the UCS.
  12. Hayrapetyan A, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2024 Jan 26;132(4):041802.
    PMID: 38335361 DOI: 10.1103/PhysRevLett.132.041802
    A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138  fb^{-1} of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ(pp→A^{'}→χ_{1}χ_{2}) and the decay branching fraction B(χ_{2}→χ_{1}μ^{+}μ^{-}), where A^{'} is a dark photon and χ_{1} and χ_{2} are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.
  13. Ghumman ASM, Shamsuddin R, Abbasi A, Ahmad M, Yoshida Y, Sami A, et al.
    Sci Total Environ, 2024 Jan 15;908:168034.
    PMID: 37924888 DOI: 10.1016/j.scitotenv.2023.168034
    Inverse vulcanized polysulfides (IVP) are promising sulfur-enriched copolymers with unconventional properties irresistible for diverse applications like Hg2+ remediation. Nevertheless, due to their inherent hydrophobic nature, these copolymers still offer low Hg2+ uptake capacity. Herein, we reported the synthesis of IVP by reacting molten sulfur with 4-vinyl benzyl chloride, followed by their functionalization using N-methyl D-glucamine (NMDG) to increase the hydration of the developed IVP. The chemical composition and structure of the functionalized IVP were proposed based on FTIR and XPS analysis. The functionalized IVP demonstrated a high mercury adsorption capacity of 608 mg/g (compared to <26 mg/g for common IVP) because of rich sulfur and hydrophilic regions. NMDG functionalized IVP removed 100 % Hg2+ from a low feed concentration (10-50 mg/l). A predictive machine learning model was also developed to predict the amount of mercury removed (%) using GPR, ANN, Decision Tree, and SVM algorithms. Hyperparameter and loss function optimization was also carried out to reduce the prediction error. The optimized GPR algorithm demonstrated high R2 (0.99 (training) and 0.98 (unseen)) and low RMSE (2.74 (training) and 2.53 (unseen)) values indicating its goodness in predicting the amount of mercury removed. The produced functionalized IVP can be regenerated and reused with constant Hg2+ uptake capacity. Sulfur is the waste of the petrochemical industry and is abundantly available, making the functionalized IVP a sustainable and cheap adsorbent that can be produced for high-volume Hg2+ remediation. ENVIRONMENTAL IMPLICATION: This research effectively addresses the removal of the global top-priority neurotoxic pollutant mercury, which is toxic even at low concentrations. We attempted to remove the Hg2+ utilizing an inexpensive adsorbent developed by NMDG functionalized copolymer of molten sulfur and VBC. A predictive machine learning model was also formulated to predict the amount of mercury removal from wastewater with only a 0.05 % error which shows the goodness of the developed model. This work is critical in utilizing this low-cost adsorbent and demonstrates its potential for large-scale industrial application.
  14. Faiz I, Ahmad M, Ramadan MF, Zia U, Rozina, Bokhari A, et al.
    J Environ Manage, 2024 Jan 15;350:119567.
    PMID: 38007927 DOI: 10.1016/j.jenvman.2023.119567
    Dealing with the current defaults of environmental toxicity, heating, waste management, and economic crises, exploration of novel non-edible, toxic, and waste feedstock for renewable biodiesel synthesis is the need of the hour. The present study is concerned with Buxus papillosa with seeds oil concentration (45% w/w), a promising biodiesel feedstock encountering environmental defaults and waste management; in addition, this research performed simulation based-response surface methodology (RSM) for Buxus papillosa bio-diesel. Synthesis and application of novel Phyto-nanocatalyst bimetallic oxide with Buxus papillosa fruit capsule aqueous extract was advantageous during transesterification. Characterization of sodium/potassium oxide Phyto-nanocatalyst confirmed 23.5 nm nano-size and enhanced catalytic activity. Other characterizing tools are FTIR, DRS, XRD, Zeta potential, SEM, and EDX. Methyl ester formation was authenticated by FTIR, GC-MS, and NMR. A maximum 97% yield was obtained at optimized conditions i.e., methanol ratio to oil (8:1), catalyst amount (0.37 wt%), reaction duration (180 min), and temperature of 80 °C. The reusability of novel sodium/potassium oxide was checked for six reactions. Buxus papillosa fuel properties were within the international restrictions of fuel. The sulphur content of 0.00090% signified the environmental remedial nature of Buxus papillosa methyl esters and it is a highly recommendable species for biodiesel production at large scale due to a t huge number of seeds production and vast distribution.
  15. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  16. Akash M, Zaib S, Ahmad M, Sultan S, Al-Hussain SA
    Front Chem, 2024;12:1371377.
    PMID: 38545466 DOI: 10.3389/fchem.2024.1371377
    Urease, a nickel-dependent enzyme found in various life forms, catalyzes urea breakdown, concluding nitrogen metabolism by generating ammonia and carbamate. This process causes a rise in pH, supports the survival of pathogens, and can lead to infections such as gastric disorders like ulcers and cancer in humans. Helicobacter pylori employs urease for survival in the acidic environment of the stomach and in protein synthesis. To treat such infections and inhibit the growth of pathogens, it is mandatory to obstruct urease activity; therefore, derivatives of 1-(3-nitropyridin-2-yl)piperazine were synthesized (5a-o; 7a-k). All these newly synthesized compounds were investigated for urease inhibition by in vitro inhibition assays. The results showed that 5b and 7e are the most active inhibitors, having IC50 values of 2.0 ± 0.73 and 2.24 ± 1.63 µM, respectively. These IC50 values are lower than the IC50 value of the standard thiourea, which was 23.2 ± 11.0 µM. The hemolysis potential of 5b, 5c, 5i, 7e, and 7h was also determined; 7e and 7h exhibited good biocompatibility in human blood cells. Through in silico analysis, it was shown that both these potent inhibitors develop favorable interactions with the active site of urease, having binding energies of -8.0 (5b) and -8.1 (7e) kcal/mol. The binding energy of thiourea was -2.8 kcal/mol. Moreover, 5b and 7e have high gastrointestinal permeability as predicted via computational analysis. On the other hand, the IC50 value and binding energy of precursor compound 3 was 3.90 ± 1.91 µM and -6.1 kcal/mol, respectively. Consequently, 5b and 7e can serve as important inhibitors of urease.
  17. Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, Damanakis K, et al.
    Phys Rev Lett, 2023 Dec 29;131(26):262301.
    PMID: 38215362 DOI: 10.1103/PhysRevLett.131.262301
    Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/ψ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W_{γN}^{Pb}) over a wide range of 40
  18. Chin AHB, Al-Balas Q, Ahmad MF, Alsomali N, Ghaly M
    J Bioeth Inq, 2023 Dec 04.
    PMID: 38047997 DOI: 10.1007/s11673-023-10293-0
    In recent years, the genetic testing and selection of IVF embryos, known as preimplantation genetic testing (PGT), has gained much traction in clinical assisted reproduction for preventing transmission of genetic defects. However, a more recent ethically and morally controversial development in PGT is its possible use in selecting IVF embryos for optimal intelligence quotient (IQ) and other non-disease-related socially desirable traits, such as tallness, fair complexion, athletic ability, and eye and hair colour, based on polygenic risk scores (PRS), in what is referred to as PGT-P. Artificial intelligence (AI) and machine learning-based analysis of big data sets collated from genome sequencing of specific human ethnic populations can be used to estimate an individual embryo's likelihood of developing such multifactorial traits by analysing the combination of specific genetic variants within its genome. Superficially, this technique appears compliant with Islamic principles and ethics. Because there is no modification of the human genome, there is no tampering with Allah's creation (taghyīr khalq Allah). Nevertheless, a more critical analysis based on the five maxims of Islamic jurisprudence (qawa'id fiqhiyyah) that are often utilized in discourses on Islamic bioethics, namely qaṣd (intention), yaqın̄ (certainty), ḍarar (injury), ḍarūra (necessity), and `urf (custom), would instead reveal some major ethical and moral flaws of this new medical technology in the selection of non-disease-related socially desirable traits, and its non-compliance with the spirit and essence of Islamic law (shariah). Muslim scholars, jurists, doctors, and biomedical scientists should debate this further and issue a fatwa on this new medical technology platform.
  19. Ahmad F, Tang XW, Ahmad M, González-Lezcano RA, Majdi A, Arbili MM
    Math Biosci Eng, 2023 Nov 29;20(12):21229-21245.
    PMID: 38124595 DOI: 10.3934/mbe.2023939
    A new logistic model tree (LMT) model is developed to predict slope stability status based on an updated database including 627 slope stability cases with input parameters of unit weight, cohesion, angle of internal friction, slope angle, slope height and pore pressure ratio. The performance of the LMT model was assessed using statistical metrics, including accuracy (Acc), Matthews correlation coefficient (Mcc), area under the receiver operating characteristic curve (AUC) and F-score. The analysis of the Acc together with Mcc, AUC and F-score values for the slope stability suggests that the proposed LMT achieved better prediction results (Acc = 85.6%, Mcc = 0.713, AUC = 0.907, F-score for stable state = 0.967 and F-score for failed state = 0.923) as compared to other methods previously employed in the literature. Two case studies with ten slope stability events were used to verify the proposed LMT. It was found that the prediction results are completely consistent with the actual situation at the site. Finally, risk analysis was carried out, and the result also agrees with the actual conditions. Such probability results can be incorporated into risk analysis with the corresponding failure cost assessment later.
  20. Ali I, Ahmad M, Ridha S, Iferobia CC, Lashari N
    RSC Adv, 2023 Nov 07;13(47):32904-32917.
    PMID: 38025871 DOI: 10.1039/d3ra06008j
    In the context of deep well drilling, the addition of functionalized additives into mud systems becomes imperative due to the adverse impact of elevated borehole temperatures and salts on conventional additives, causing them to compromise their intrinsic functionalities. Numerous biomaterials have undergone modifications and have been evaluated in drilling muds. However, the addition of dually modified tapioca starch in bentonite-free mud systems remains a notable gap within the existing literature. This study aims to examine the performance of dually modified carboxymethyl irradiated tapioca starch (CMITS) under high temperature and salt-containing conditions employing central composite design approach; the study evaluates the modified starch's impact on mud rheology, thermal stability, and salt resistance. The findings indicated that higher DS (0.66) and CMITS concentrations (8 ppb) improved plastic viscosity (PV), yield point (YP) and gel strength (GS), while increased salt and temperature decreased it, demonstrating the complex interplay of these factors on mud rheology. The developed empirical models suggested that DS 0.66 starch addition enhanced rheology, especially at elevated temperatures, demonstrating improved borehole cleaning potential, supported by quadratic model performance indicators in line with American Petroleum Institute (API) ranges. The optimized samples showed a non-Newtonian behavior, and Power-law model fitting yields promising results for improved cuttings transportation with starch additives.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links