Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Abdul Aziz SFN, Salleh AB, Normi YM, Mohammad Latif MA, Alang Ahmad SA
    Enzyme Microb Technol, 2024 Mar 21;178:110439.
    PMID: 38579423 DOI: 10.1016/j.enzmictec.2024.110439
    Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20. The metal ion-binding site prediction and docking (MIB) web server was employed to identify the metal ion binding sites and their affinities towards mp20 residues. Among the tested metal ions, Cu2+ displayed the highest docking score, indicating its preference for interaction with Thr16 and Asp17 residues of mp20. To assess the catalytic activity of mp20 in the presence of metal ions, uric acid assays was monitored using a colorimetric method. The presence of Cu2+ in the assays promotes the activation of mp20, resulting in a color change based on quinoid production. Furthermore, the encapsulation of the mp20 within zeolitic imidazolate framework-8 (ZIF-8) notably improved the stability of the biomolecule. In comparison to the naked mp20, the encapsulated ZIFs biocomposite (mp20@ZIF-8) demonstrates superior stability, selectivity and sensitivity. ZIF's porous shells provides excellent protection, broad detection (3-100 μM) with a low limit (4.4 μM), and optimal function across pH (3.4-11.4) and temperature (20-100°C) ranges. Cost-effective and stable mp20@ZIF-8 surpasses native uricase, marking a significant biosensor technology breakthrough. This integration of metal cofactor optimization and robust encapsulation sets new standards for biosensing applications.
  2. Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, et al.
    Anal Bioanal Chem, 2024 Jan;416(1):227-241.
    PMID: 37938411 DOI: 10.1007/s00216-023-05011-z
    This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
  3. Ishak S, Rosly NZ, Abdullah AH, Alang Ahmad SA
    Environ Monit Assess, 2023 Oct 12;195(11):1303.
    PMID: 37828347 DOI: 10.1007/s10661-023-11909-z
    Calix[4]arene/polyurethane (C4PU) has been synthesized and characterized as an alternative adsorbent for the adsorption of methylene blue (MB) and malachite green (MG) dyes from the aqueous solution. C4PU was synthesized by reacting p-tert-butyl calix[4]arene with hexamethylene diisocyanate (HMDI) as the cross-linking agent. Different polymer ratios were synthesized, and C4PU-4 shows better adsorption than other ratios. The polymer was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) analysis, and point of zero charges (pHPZC). The isotherms and kinetics of the adsorption of MB and MG were studied under a range of experimental conditions, including pH, adsorbent dosage, initial dye concentration, and contact time. The adsorption was determined by the adsorption percentage of MB and MG dyes from the solution. The Langmuir isotherm model best describes the adsorption process for both dyes, and it follows a pseudo-second-order kinetic model, with the maximum adsorption capacity (qmax) of MB and MG, respectively, was found to be 1.991 mg·g-1 and 2.240 mg·g-1.
  4. Perera CK, Gopalai AA, Gouwanda D, Ahmad SA, Salim MSB
    Sci Rep, 2023 Oct 03;13(1):16640.
    PMID: 37789077 DOI: 10.1038/s41598-023-43148-0
    Forward continuation, balance, and sit-to-stand-and-walk (STSW) are three common movement strategies during sit-to-walk (STW) executions. Literature identifies these strategies through biomechanical parameters using gold standard laboratory equipment, which is expensive, bulky, and requires significant post-processing. STW strategy becomes apparent at gait-initiation (GI) and the hip/knee are primary contributors in STW, therefore, this study proposes to use the hip/knee joint angles at GI as an alternate method of strategy classification. To achieve this, K-means clustering was implemented using three clusters corresponding to the three STW strategies; and two feature sets corresponding to the hip/knee angles (derived from motion capture data); from an open access online database (age: 21-80 years; n = 10). The results identified forward continuation with the lowest hip/knee extension, followed by balance and then STSW, at GI. Using this classification, strategy biomechanics were investigated by deriving the established biomechanical quantities from literature. The biomechanical parameters that significantly varied between strategies (P 
  5. Puan SL, Erriah P, Baharudin MMA, Yahaya NM, Kamil WNIWA, Ali MSM, et al.
    Appl Microbiol Biotechnol, 2023 Sep;107(18):5569-5593.
    PMID: 37450018 DOI: 10.1007/s00253-023-12651-9
    Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
  6. Darham S, Zakaria NN, Zulkharnain A, Sabri S, Khalil KA, Merican F, et al.
    Braz J Microbiol, 2023 Sep;54(3):2011-2026.
    PMID: 36973583 DOI: 10.1007/s42770-023-00949-9
    In Antarctica, human activities have been reported to be the major cause of the accumulation of heavy metal contaminants. A comprehensive bibliometric analysis of publications on heavy metal contamination in Antarctica from year 2000 to 2020 was performed to obtain an overview of the current landscape in this line of research. A total of 106 documents were obtained from Scopus, the largest citation database. Extracted data were analysed, and VOSviewer software was used to visualise trends. The result showed an increase in publications and citations in the past 20 years indicating the rising interest on heavy metal contamination in the Antarctic region. Based on the analysis of keywords, the publications largely discuss various types of heavy metals found in the Antarctic water and sediment. The analysis on subject areas detects multiple disciplines involved, wherein the environmental science was well-represented. The top countries and authors producing the most publication in this field were from Australia, China, Brazil and Chile. Numerous efforts have been exercised to investigate heavy metal pollution and its mitigation approaches in the region in the past decades. This paper not only is relevant for scholars to understand the development status and trends in this field but also offers clear insights on the future direction of Antarctic heavy metal contamination and remediation research.
  7. Zamree ND, Puasa NA, Lim ZS, Wong CY, Shaharuddin NA, Zakaria NN, et al.
    Plants (Basel), 2023 Jul 03;12(13).
    PMID: 37447097 DOI: 10.3390/plants12132536
    Research has confirmed that the utilisation of Antarctic microorganisms, such as bacteria, yeasts and fungi, in the bioremediation of diesel may provide practical alternative approaches. However, to date there has been very little attention towards Antarctic microalgae as potential hydrocarbon degraders. Therefore, this study focused on the utilisation of an Antarctic microalga in the bioremediation of diesel. The studied microalgal strain was originally obtained from a freshwater ecosystem in Paradise Bay, western Antarctic Peninsula. When analysed in systems with and without aeration, this microalgal strain achieved a higher growth rate under aeration. To maintain the growth of this microalga optimally, a conventional one-factor-at a-time (OFAT) analysis was also conducted. Based on the optimized parameters, algal growth and diesel degradation performance was highest at pH 7.5 with 0.5 mg/L NaCl concentration and 0.5 g/L of NaNO3 as a nitrogen source. This currently unidentified microalga flourished in the presence of diesel, with maximum algal cell numbers on day 7 of incubation in the presence of 1% v/v diesel. Chlorophyll a, b and carotenoid contents of the culture were greatest on day 9 of incubation. The diesel degradation achieved was 64.5% of the original concentration after 9 days. Gas chromatography analysis showed the complete mineralisation of C7-C13 hydrocarbon chains. Fourier transform infrared spectroscopy analysis confirmed that strain WCY_AQ5_3 fully degraded the hydrocarbon with bioabsorption of the products. Morphological and molecular analyses suggested that this spherical, single-celled green microalga was a member of the genus Micractinium. The data obtained confirm that this microalga is a suitable candidate for further research into the degradation of diesel in Antarctica.
  8. Abdul Aziz SFN, Rahim ASMA, Normi YM, Alang Ahmad SA, Salleh AB
    Proteins, 2023 Jul;91(7):967-979.
    PMID: 36908223 DOI: 10.1002/prot.26485
    Five mini proteins mimicking uricase comprising 20, 40, 60, 80, and 100 amino acids were designed based on the conserved active site residues within the same dimer, using the crystal structure of tetrameric uricase from Arthrobacter globiformis (PDB ID: 2yzb) as a template. Based on molecular docking analysis, the smallest mini protein, mp20, shared similar residues to that of native uricase that formed hydrogen bonds with uric acid and was chosen for further studies. Although purified recombinant mp20 did not exhibit uricase activity, it showed specific binding towards uric acid and evinced excellent thermotolerance and structural stability at temperatures ranging from 10°C to 100°C, emulating its natural origin. To explore the potential of mp20 as a bioreceptor in uric acid sensing, mp20 was encapsulated within zeolitic imidazolate framework-8 (mp20@ZIF-8) followed by the modification on rGO-screen printed electrode (rGO/SPCE) to maintain the structural stability. An irreversible anodic peak and increased semicircular arcs of the Nyquist plot with an increase of the analyte concentrations were observed by utilizing cyclic voltammetry and electrochemical impedance spectroscopy (EIS), suggesting the detection of uric acid occurred, which is based on substrate-mp20 interaction.
  9. Jamaluddin J, Kamarudin N, Ismail MH, Ahmad SA
    J Environ Manage, 2023 Apr 20;340:117977.
    PMID: 37086558 DOI: 10.1016/j.jenvman.2023.117977
    Suitable extraction technique and the least cost while reducing the environmental impact is the primary concern in timber transportation planning in undulate topography. Two types of extraction machines with unique characteristics to be applied in timber harvest area in Malaysia is combined for timber harvesting with the aim each machine will extract timber suitable to their ability. A Bees Algorithm (BA) was proposed to find an optimum TTP for timber extraction, forest road, and landing locations with grid cell-sized 10 m × 10 m and attributed with fixed and variable costs. The result shows the log fisher (1351 timbers) as a preferable extraction technique with total cost of RM 86,551.73 than the crawler tractor (206 timbers); the timber extraction route is 2630 m for the log fisher and 9860 m for the crawler tractor with total cost of RM 10,453.03. The model finds a suitable timber extraction technique and estimates the extraction costs. Further studies are required to compare the BA with other optimization methods for better results.
  10. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
  11. Abdul Rahman K, Ahmad SA, Che Soh A, Ashari A, Wada C, Gopalai AA
    Gerontol Geriatr Med, 2023;9:23337214221148245.
    PMID: 36644687 DOI: 10.1177/23337214221148245
    Engineering invention must be in tandem with public demands. Often it is difficult to identify the priorities of consumers where technological advancement is needed. In line with the global challenge of increasing fall prevalence among older adults, providing prevention solutions is the key. This study aims at developing an improved fall detection device using an approach called Quality Function Deployment (QFD). The goal is to investigate features to incorporate in existing device from consumer's perspectives. A three-phases design process is constructed; (1) Questionnaire, (2) Ishikawa Method, and (3) QFD. The proposed method begins with identifying customer needs as the requirement analysis, followed by a method to convert them to design specifications to be added in a fall detection device using QFD tool. As the top feature is monitoring balance, the new improved fall detection devices incorporating balance features will help older adults to monitor their level of risk of falling.
  12. Jamaluddin FN, Ibrahim F, Ahmad SA
    J Healthc Eng, 2023;2023:1951165.
    PMID: 36756137 DOI: 10.1155/2023/1951165
    In sports, fatigue management is vital as adequate rest builds strength and enhances performance, whereas inadequate rest exposes the body to prolonged fatigue (PF) or also known as overtraining. This paper presents PF identification and classification based on surface electromyography (EMG) signals. An experiment was performed on twenty participants to investigate the behaviour of surface EMG during the inception of PF. PF symptoms were induced in accord with a five-day Bruce Protocol treadmill test on four lower extremity muscles: the biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL). The results demonstrate that the experiment successfully induces soreness, unexplained lethargy, and performance decrement and also indicate that the progression of PF can be observed based on changes in frequency features (ΔF med and ΔF mean) and time features (ΔRMS and ΔMAV) of surface EMG. This study also demonstrates the ability of wavelet index features in PF identification. Using a naïve Bayes (NB) classifier exhibits the highest accuracy based on time and frequency features with 98% in distinguishing PF on RF, 94% on BF, 9% on VL, and 97% on VM. Thus, this study has positively indicated that surface EMG can be used in identifying the inception of PF. The implication of the findings is significant in sports to prevent a greater risk of PF.
  13. Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500396 DOI: 10.3390/molecules27238304
    The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
  14. Jafar A, Dollah R, Dambul R, Mittal P, Ahmad SA, Sakke N, et al.
    Int J Environ Res Public Health, 2022 Sep 05;19(17).
    PMID: 36078822 DOI: 10.3390/ijerph191711108
    Amid the outbreak of the COVID-19 pandemic in the year 2020, educational platforms have been forced to change and adapt from conventional physical learning to virtual learning. Nearly all higher learning institutions worldwide are forced to follow the new educational setting through virtual platforms. Sabah is one of the poorest states in Malaysia with the poorest infrastructure, with the technology and communication facilities in the state remaining inept. With the changes in virtual platforms in all higher education institutions in Malaysia, higher learning institutions in Sabah are expected to follow the lead, despite the state lagging in its development. This has certainly impacted the overall productivity and performance of students in Sabah. Therefore, this study aims to explore the challenges of the implementation of virtual learning among students in Sabah. More specifically, this study seeks to identify vulnerable groups among students based on their geographical location. To achieve the objective of this study, a survey has been conducted on a total of 1,371 students in both private and public higher learning institutions in Sabah. The sample selection for this study was determined using a purposive sampling technique. Based on Principal Component Analysis (PCA), it was found that there are five challenges in virtual learning faced by students in higher learning institutions in Sabah. These are the unconducive learning environment (var(X) = 20.12%), the deterioration of physical health (var(X) = 13.40%), the decline of mental health (var(X) = 12.10%), the limited educational facilities (var(X) = 10.14%) and social isolation (var(X) = 7.47%). The K-Means Clustering analysis found that there are six student clusters in Sabah (Cluster A, B, C, D, E & F), each of which faces different challenges in participating in virtual learning. Based on the assessment of location, almost half of the total number of districts in Sabah are dominated by students from Cluster A (9 districts) and Cluster B (4 districts). More worryingly, both Cluster A and Cluster B are classified as highly vulnerable groups in relation to the implementation of virtual learning. The results of this study can be used by the local authorities and policymakers in Malaysia to improve the implementation of virtual learning in Sabah so that the education system can be more effective and systematic. Additionally, the improvement and empowerment of the learning environment are crucial to ensuring education is accessible and inclusive for all societies, in line with the fourth of the Sustainable Development Goals (SDG-4).
  15. Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, et al.
    Plants (Basel), 2021 Dec 06;10(12).
    PMID: 34961148 DOI: 10.3390/plants10122677
    One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
  16. Verasoundarapandian G, Zakaria NN, Shaharuddin NA, Khalil KA, Puasa NA, Azmi AA, et al.
    Plants (Basel), 2021 Nov 16;10(11).
    PMID: 34834831 DOI: 10.3390/plants10112468
    Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM-EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett-Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills.
  17. Zahri KNM, Khalil KA, Gomez-Fuentes C, Zulkharnain A, Sabri S, Convey P, et al.
    Foods, 2021 Nov 14;10(11).
    PMID: 34829082 DOI: 10.3390/foods10112801
    An Antarctic soil bacterial consortium (reference BS14) was confirmed to biodegrade canola oil, and kinetic studies on this biodegradation were carried out. The purpose of this study was to examine the ability of BS14 to produce biosurfactants during the biodegradation of canola oil. Secondary mathematical equations were chosen for kinetic analyses (Monod, Haldane, Teissier-Edwards, Aiba and Yano models). At the same time, biosurfactant production was confirmed through a preliminary screening test and further optimised using response surface methodology (RSM). Mathematical modelling demonstrated that the best-fitting model was the Haldane model for both waste (WCO) and pure canola oil (PCO) degradation. Kinetic parameters including the maximum degradation rate (μmax) and maximum concentration of substrate tolerated (Sm) were obtained. For WCO degradation these were 0.365 min-1 and 0.308%, respectively, while for PCO they were 0.307 min-1 and 0.591%, respectively. The results of all preliminary screenings for biosurfactants were positive. BS14 was able to produce biosurfactant concentrations of up to 13.44 and 14.06 mg/mL in the presence of WCO and PCO, respectively, after optimisation. The optimum values for each factor were determined using a three-dimensional contour plot generated in a central composite design, where a combination of 0.06% salinity, pH 7.30 and 1.55% initial substrate concentration led to the highest biosurfactant production when using WCO. Using PCO, the highest biosurfactant yield was obtained at 0.13% salinity, pH 7.30 and 1.25% initial substrate concentration. This study could help inform the development of large-scale bioremediation applications, not only for the degradation of canola oil but also of other hydrocarbons in the Antarctic by utilising the biosurfactants produced by BS14.
  18. Tan HT, Yusoff FM, Khaw YS, Ahmad SA, Shaharuddin NA
    Plants (Basel), 2021 Nov 01;10(11).
    PMID: 34834721 DOI: 10.3390/plants10112358
    Phycobiliproteins are gaining popularity as long-term, high-value natural products which can be alternatives to synthetic products. This study analyzed research trends of phycobiliproteins from 1909 to 2020 using a bibliometric approach based on the Scopus database. The current findings showed that phycobiliprotein is a burgeoning field in terms of publications outputs with "biochemistry, genetics, and molecular biology" as the most related and focused subject. The Journal of Applied Phycology was the most productive journal in publishing articles on phycobiliproteins. Although the United States of America (U.S.A.) contributed the most publications on phycobiliproteins, the Chinese Academy of Sciences (China) is the institution with the largest number of publications. The most productive author on phycobiliproteins was Glazer, Alexander N. (U.S.A.). The U.S.A. and Germany were at the forefront of international collaboration in this field. According to the keyword analysis, the most explored theme was the optimization of microalgae culture parameters and phycobiliproteins extraction methods. The bioactivity properties and extraction of phycobiliproteins were identified as future research priorities. Synechococcus and Arthrospira were the most cited genera. This study serves as an initial step in fortifying the phycobiliproteins market, which is expected to exponentially expand in the future. Moreover, further research and global collaboration are necessary to commercialize phycobiliproteins and increase the consumer acceptability of the pigments and their products.
  19. Zuhar LM, Madihah AZ, Ahmad SA, Zainal Z, Idris AS, Shaharuddin NA
    Plants (Basel), 2021 Sep 27;10(10).
    PMID: 34685835 DOI: 10.3390/plants10102026
    Basal stem rot (BSR) disease caused by pathogenic fungus Ganoderma boninense is a significant concern in the oil palm industry. G. boninense infection in oil palm induces defense-related genes. To understand oil palm defense mechanisms in response to fungal invasion, we analyzed differentially expressed genes (DEGs) derived from RNA-sequencing (RNA-seq) transcriptomic libraries of oil palm roots infected with G. boninense. A total of 126 DEGs were detected from the transcriptomic libraries of G. boninense-infected root tissues at different infection stages. Functional annotation via pathway enrichment analyses revealed that the DEGs were involved in the defense response against the pathogen. The expression of the selected DEGs was further confirmed using real-time quantitative PCR (qPCR) on independent oil palm seedlings and mature palm samples. Seven putative defense-related DEGs consistently showed upregulation in seedlings and mature plants during G. boninense infection. These seven genes might potentially be developed as biomarkers for the early detection of BSR in oil palm.
  20. Puasa NA, Zulkharnain A, Verasoundarapandian G, Wong CY, Zahri KNM, Merican F, et al.
    Animals (Basel), 2021 Aug 26;11(9).
    PMID: 34573474 DOI: 10.3390/ani11092505
    Antarctica is a relatively pristine continent that attracts scientists and tourists alike. However, the risk of environmental pollution in Antarctica is increasing with the increase in the number of visitors. Recently, there has been a surge in interest regarding diesel, heavy metals and microplastics pollution. Contamination from these pollutants poses risks to the environment and the health of organisms inhabiting the continent. Penguins are one of the most prominent and widely distributed animals in Antarctica and are at major risk due to pollution. Even on a small scale, the impacts of pollution toward penguin populations are extensive. This review discusses the background of penguins in Antarctica, the anthropogenic pollution and cases, as well as the impacts of diesel, heavy metals and microplastics toxicities on penguins. The trends of the literature for the emerging risks of these pollutants are also reviewed through a bibliometric approach and network mapping analysis. A sum of 27 articles are analyzed on the effects of varying pollutants on penguins in Antarctica from 2000 to 2020 using the VOSviewer bibliometric software, Microsoft Excel and Tableau Public. Research articles collected from the Scopus database are evaluated for the most applicable research themes according to the bibliometric indicators (articles, geography distribution, annual production, integrated subject areas, key source journals and keyword or term interactions). Although bibliometric studies on the present research theme are not frequent, our results are sub-optimal due to the small number of search query matches from the Scopus database. As a result, our findings offer only a fragmentary comprehension of the topics in question. Nevertheless, this review provides valuable inputs regarding prospective research avenues for researchers to pursue in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links