Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Khalil KA, Mustafa S, Mohammad R, Ariff AB, Ahmad SA, Dahalan FA, et al.
    Int J Microbiol, 2019;2019:4208986.
    PMID: 31093290 DOI: 10.1155/2019/4208986
    Bovine gelatin is a biopolymer which has good potential to be used in encapsulating matrices for probiotic candidate Bifidobacterium pseudocatenulatum strain G4 (G4) because of its amphoteric nature characteristic. Beads were prepared by the extrusion method using genipin and sodium alginate as a cross-linking agent. The optimisation of bovine gelatin-genipin-sodium alginate combinations was carried out using face central composition design (FCCD) to investigate G4 beads' strength, before and after exposed to simulated gastric (SGF), intestinal fluids (SIF), and encapsulation yield. A result of ANOVA and the polynomial regression model revealed the combinations of all three factors have a significant effect (p < 0.05) on the bead strength. Meanwhile, for G4 encapsulation yield, only genipin showed less significant effect on the response. However, the use of this matrix remained due to the intermolecular cross-linking ability with bovine gelatin. Optimum compositions of bovine gelatin-genipin-sodium alginate were obtained at 11.21% (w/v), 1.96 mM, and 2.60% (w/v), respectively. A model was validated for accurate prediction of the response and showed no significant difference (p > 0.05) with experimental values.
  2. Shair EF, Ahmad SA, Marhaban MH, Mohd Tamrin SB, Abdullah AR
    Biomed Res Int, 2017;2017:3937254.
    PMID: 28303251 DOI: 10.1155/2017/3937254
    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications.
  3. Ahmad SA, Abdul Wahat NH, Zakaria MN, Wiener-Vacher SR, Abdullah NA
    Int J Pediatr Otorhinolaryngol, 2020 Aug;135:110132.
    PMID: 32502914 DOI: 10.1016/j.ijporl.2020.110132
    OBJECTIVE: Vestibular assessments in children are essential for the early identification of vestibular and balance dysfunctions. Vestibular evoked myogenic potentials, cervical (cVEMPs) and ocular (oVEMPs) have been reported to be feasible and effective when assessing otolith function in children. The main aim of the study was to obtain normative data for cVEMPs and oVEMPs from preschool and primary school-aged Malaysian children.

    METHODS: A group of 33 healthy children, aged from 5 years 9 months-12 years 4 months (mean ± SD = 8.83 ± 1.92 years), was recruited. Their otolith saccular function was assessed using 750 Hz tone burst for cVEMPs (with ER3A insert phone), while their utricular function was assessed using Brüel & Kjaer Mini-shaker Type 4810 (Naerum, Denmark) for oVEMPs.

    RESULTS: For cVEMPs, the mean value of P13 latency, N23 latency, P13-N23 interamplitude and asymmetry ratio were 12.62 ± 1.38 ms, 19.85 ± 1.95 ms, 92.47 ± 50.35 μV and 14.03 ± 9.75%, respectively. For oVEMPs, the mean value of N10 latency, P15 latency, N10-P15 interamplitude and asymmetry ratio were 9.23 ± 1.07 ms, 14.41 ± 1.04 ms, 10.32 ± 5.65 μV and 15.84 ± 11.49%, respectively. Two-way ANOVA analysis found that ear laterality and gender had no significant effect on all cVEMPs and oVEMPs parameters. No significant correlation was found between age and all VEMPs parameters.

    CONCLUSIONS: The normative data for cVEMPs and oVEMPs obtained in this study can be used as a guide by health professionals to assess saccular and utricular functions among children age from 5 to 12 years of age.

  4. Yapp JH, Raja Ahmad RMK, Mahmud R, Mohtarrudin N, Mohamad Yusof L, Abdul Rahim E, et al.
    Wound Repair Regen, 2019 05;27(3):225-234.
    PMID: 30667138 DOI: 10.1111/wrr.12698
    Frequent repositioning is important to prevent pressure ulcer (PU) development, by relieving pressure and recovering damages on skin areas induced by repetitive loading. Although repositioning is the gold standard to prevent PU, there is currently no strategy for determining tissue condition under preventive approaches. In this study, the peak reactive hyperemia (RH) trends and ultrasonographic (US) features are compared with the tissue condition under histopathological examination to determine the potential use of these features in determining the tissue condition noninvasively. Twenty-one male Sprague-Dawley rats (seven per group), with body weight of 385-485 g, were categorized into three groups and subjected to different recovery times, each with three repetitive loading cycles at skin tissues above of right trochanter area. The first, second, and third groups were subjected to short (3 minutes), moderate (10 minutes), and prolonged (40 minutes) recovery, respectively, while applying fixed loading time and pressure (10 minutes and 50 mmHg, respectively), to provide different degree of recovery and tissue conditions (tissue damage and tissue recovery). Peak RH was measured in the three cycles to determine RH trend (increasing, decreasing, and inconsistent). All rat tissues were evaluated using ultrasound at pre- and post-experiment and rated by two raters to categorize the severity of tissue changes (no, mild, moderate, and severe). The tissue condition was also evaluated using histopathological examination to distinguish between normal and abnormal tissues. Most of the samples with increasing RH trend is related to abnormal tissue (71%); while inconsistent RH trends is more related to normal tissue (82%). There is no relationship between the tissue conditions evaluated under ultrasonographic and histopathological examination. Peak RH trend over repetitive loading may serve as a new feature for determining the tissue condition that leading to pressure ulcer.
  5. Yapp JH, Kamil R, Rozi M, Mohtarrudin N, Loqman MY, Ezamin AR, et al.
    J Tissue Viability, 2017 Aug;26(3):196-201.
    PMID: 28438463 DOI: 10.1016/j.jtv.2017.03.002
    Tissue recovery is important in preventing tissue deterioration, which is induced by pressure and may lead to pressure ulcers (PU). Reactive hyperaemia (RH) is an indicator used to identify people at risk of PU. In this study, the effect of different recovery times on RH trend is investigated during repetitive loading. Twenty-one male Sprague-Dawley rats (seven per group), with body weight of 385-485 g, were categorised into three groups and subjected to different recovery times with three repetitive loading cycles. The first, second, and third groups were subjected to short (3 min), moderate (10 min), and prolonged (40 min) recovery, respectively, while fixed loading time and pressure (10 min and 50 mmHg, respectively). Peak hyperaemia was measured in the three cycles to determine trends associated with different recovery times. Three RH trends (increasing, decreasing, and inconsistent) were observed. As the recovery time is increased (3 min vs. 10 min vs. 40 min), the number of samples with increasing RH trend decreases (57% vs. 29% vs. 14%) and the number of samples with inconsistent RH trend increases (29% vs. 57% vs. 72%). All groups consists of one sample with decreasing RH trend (14%). Results confirm that different recovery times affect the RH trend during repetitive loading. The RH trend may be used to determine the sufficient recovery time of an individual to avoid PU development.
  6. Zaini MS, Liew JYC, Alang Ahmad SA, Mohmad AR, Ahmad Kamarudin M
    ACS Omega, 2020 Dec 08;5(48):30956-30962.
    PMID: 33324803 DOI: 10.1021/acsomega.0c03768
    The existence of surface organic capping ligands on quantum dots (QDs) has limited the potential in QDs emission properties and energy band gap structure alteration as well as the carrier localization. This drawback can be addressed via depositing a thin layer of a semiconductor material on the surface of QDs. Herein, we report on the comparative study for photoluminescent (PL) properties of PbS and PbS/MnS QDs. The carrier localization effect due to the alteration of energy band gap structure and carrier recombination mechanism in the QDs were investigated via PL measurements in a temperature range of 10-300 K with the variation of the excitation power from 10 to 200 mW. For PbS QDs, the gradient of integrated PL intensity (IPL) as a function of excitation power density graph was less than unity. When the MnS shell layer was deposited onto the PbS core, the PL emission exhibited a blue shift, showing dominant carrier recombination. It was also found that the full width half-maximum showed a gradual broadening with the increasing temperature, affirming the electron-phonon interaction.
  7. Hassan I, Wan Ibrahim WN, Yusuf FM, Ahmad SA, Ahmad S
    J Toxicol, 2020;2020:8815313.
    PMID: 33029137 DOI: 10.1155/2020/8815313
    Background: Pathophysiological changes leading to the death of nerve cells present in the brain and spinal cord are referred to as neurodegenerative diseases. Presently, treatment of these diseases is not effective and encounters many challenges due to the cost of drug and side effects. Thus, the search for the alternative agents to replace synthetic drugs is in high demand. Therefore, the aim of this study is to evaluate the anticholinesterase properties of Ginkgo biloba seed.

    Methods: The seed was extracted with 80% methanol. Toxicity studies and evaluation of anticholinesterase activities were carried out in adult Javanese medaka (Oryzias javanicus). Phytochemical study to identify the bioactive lead constituents of the crude extract was also carried out using high performance liquid chromatography (HPLC).

    Results: The result shows activities with high significant differences at P < 0.001 between the treated and nontreated groups. A bioactive compound (vitaxin) was identified with the aid of HPLC method.

    Conclusion: The presence of bioactive compound vitaxin is among the major secondary metabolites that contribute to increasing activities of this plant extract. High anticholinesterase activities and low toxicity effect of this plant show its benefit to be used as natural medicine or supplements.

  8. Hassan IM, Wan Ibrahim WN, Yusuf FM, Ahmad SA, Ahmad S
    Pak J Pharm Sci, 2021 Jan;34(1):47-56.
    PMID: 34248002
    Diseases caused by oxidative stress can be prevented by antioxidant. Current treatments for those neurodegenerative diseases are not effective and cause many side effects. Thus, the search for alternative medicines is in high demand. Therefore, the main purposed of this study is to evaluate the neuroprotective effects of Curcuma longa (rhizome) 80% methanol extract. Antioxidant using dichlorofuoresence diacetate (DCF-DA) assay on SH-SY5Y cells revealed high activities of Curcuma longa (rhizome) extract with IC50 of 105.9±0.8 µg/mL. Sub-acute and chronic toxicity tests of the plant extract on adult Javanese medaka (Oryzias javanicus) showed high toxicity effect with LC50 of 24.15±0.8 mg/L and 13.69±0.7 mg/L respectively. Neuroprotective tests using cholinesterase assay disclose significant differences at P<0.05 between the group that are exposed to arsenic and treated with the crude extract and the group that are exposed to only arsenic. Identification of vitexin and isovitexin justified the high antioxidant potential of this plant leaf and it highest benefit to be used as medicinal supplement.
  9. Mostofa F, Yasid NA, Shamsi S, Ahmad SA, Mohd-Yusoff NF, Abas F, et al.
    Molecules, 2022 Nov 28;27(23).
    PMID: 36500396 DOI: 10.3390/molecules27238304
    The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
  10. Sabullah MK, Sulaiman MR, Abd Shukor MY, Syed MA, Shamaan NA, Khalid A, et al.
    ScientificWorldJournal, 2014;2014:571094.
    PMID: 25401148 DOI: 10.1155/2014/571094
    Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
  11. Halmi MI, Zuhainis SW, Yusof MT, Shaharuddin NA, Helmi W, Shukor Y, et al.
    Biomed Res Int, 2013;2013:384541.
    PMID: 24383052 DOI: 10.1155/2013/384541
    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
  12. Veeraragavan S, Gopalai AA, Gouwanda D, Ahmad SA
    Front Physiol, 2020;11:587057.
    PMID: 33240106 DOI: 10.3389/fphys.2020.587057
    Gait analysis plays a key role in the diagnosis of Parkinson's Disease (PD), as patients generally exhibit abnormal gait patterns compared to healthy controls. Current diagnosis and severity assessment procedures entail manual visual examinations of motor tasks, speech, and handwriting, among numerous other tests, which can vary between clinicians based on their expertise and visual observation of gait tasks. Automating gait differentiation procedure can serve as a useful tool in early diagnosis and severity assessment of PD and limits the data collection to solely walking gait. In this research, a holistic, non-intrusive method is proposed to diagnose and assess PD severity in its early and moderate stages by using only Vertical Ground Reaction Force (VGRF). From the VGRF data, gait features are extracted and selected to use as training features for the Artificial Neural Network (ANN) model to diagnose PD using cross validation. If the diagnosis is positive, another ANN model will predict their Hoehn and Yahr (H&Y) score to assess their PD severity using the same VGRF data. PD Diagnosis is achieved with a high accuracy of 97.4% using simple network architecture. Additionally, the results indicate a better performance compared to other complex machine learning models that have been researched previously. Severity Assessment is also performed on the H&Y scale with 87.1% accuracy. The results of this study show that it is plausible to use only VGRF data in diagnosing and assessing early stage Parkinson's Disease, helping patients manage the symptoms earlier and giving them a better quality of life.
  13. Lee GLY, Zakaria NN, Convey P, Futamata H, Zulkharnain A, Suzuki K, et al.
    Int J Mol Sci, 2020 Dec 09;21(24).
    PMID: 33316871 DOI: 10.3390/ijms21249363
    Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
  14. Ibrahim S, Shukor MY, Syed MA, Johari WL, Shamaan NA, Sabullah MK, et al.
    J Gen Appl Microbiol, 2016;62(1):18-24.
    PMID: 26923127 DOI: 10.2323/jgam.62.18
    In a previous study, we isolated Leifsonia sp. strain SIU, a new bacterium from agricultured soil. The bacterium was tested for its ability to degrade caffeine. The isolate was encapsulated in gellan gum and its ability to degrade caffeine was compared with the free cells. The optimal caffeine degradation was attained at a gellan gum concentration of 0.75% (w/v), a bead size of 4 mm diameter, and 250 beads per 100 mL of medium. At a caffeine concentration of 0.1 g/L, immobilised cells of the strain SIU degraded caffeine within 9 h, which is faster when compared to the case of free cells, in which it took 12 h to degrade. The immobilised cells degraded caffeine completely within 39 and 78 h at 0.5 and 1.0 g/L, while the free cells took 72 and 148 h at 0.5 and 1.0 g/L, respectively. At higher caffeine concentrations, immobilised cells exhibited a higher caffeine degradation rate. At concentrations of 1.5 and 2.0 g/L, caffeine-degrading activities of both immobilised and free cells were inhibited. The immobilised cells showed no loss in caffeine-degrading activity after being used repeatedly for nine 24-h cycles. The effect of heavy metals on immobilised cells was also tested. This study showed an increase in caffeine degradation efficiency when the cells were encapsulated in gellan gum.
  15. Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA
    PMID: 33572432 DOI: 10.3390/ijerph18041671
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
  16. Zahri KNM, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    PMID: 33669826 DOI: 10.3390/ijerph18042050
    In the present age, environmental pollution is multiplying due to various anthropogenic activities. Pollution from waste cooking oil is one of the main issues facing the current human population. Scientists and researchers are seriously concerned about the oils released from various activities, including the blockage of the urban drainage system and odor issues. In addition, cooking oil is known to be harmful and may have a carcinogenic effect. It was found that current research studies and publications are growing on these topics due to environmental problems. A bibliometric analysis of studies published from 2001 to 2021 on cooking oil degradation was carried out using the Scopus database. Primarily, this analysis identified the reliability of the topic for the present-day and explored the past and present progresses of publications on various aspects, including the contributing countries, journals and keywords co-occurrence. The links and interactions between the selected subjects (journals and keywords) were further visualised using the VOSviewer software. The analysis showed that the productivity of the publications is still developing, with the most contributing country being the United States, followed by China and India with 635, 359 and 320 publications, respectively. From a total of 1915 publications, 85 publications were published in the Journal of Agricultural and Food Chemistry. Meanwhile, the second and third of the most influential journals were Bioresource Technology and Industrial Crops and Products with 76 and 70 total publications, respectively. Most importantly, the co-occurrence of the author's keywords revealed "biodegradation", "bioremediation", "vegetable oil" and "Antarctic" as the popular topics in this study area, especially from 2011 to 2015. In conclusion, this bibliometric analysis on the degradation of cooking oil may serve as guide for future avenues of research in this area of research.
  17. Wong RR, Lim ZS, Shaharuddin NA, Zulkharnain A, Gomez-Fuentes C, Ahmad SA
    PMID: 33562609 DOI: 10.3390/ijerph18041512
    Diesel acts as a main energy source to complement human activities in Antarctica. However, the increased expedition in Antarctica has threatened the environment as well as its living organisms. While more efforts on the use of renewable energy are being done, most activities in Antarctica still depend heavily on the use of diesel. Diesel contaminants in their natural state are known to be persistent, complex and toxic. The low temperature in Antarctica worsens these issues, making pollutants more significantly toxic to their environment and indigenous organisms. A bibliometric analysis had demonstrated a gradual increase in the number of studies on the microbial hydrocarbon remediation in Antarctica over the year. It was also found that these studies were dominated by those that used bacteria as remediating agents, whereas very little focus was given on fungi and microalgae. This review presents a summary of the collective and past understanding to the current findings of Antarctic microbial enzymatic degradation of hydrocarbons as well as its genotypic adaptation to the extreme low temperature.
  18. De Silva C, Nawawi NM, Abd Karim MM, Abd Gani S, Masarudin MJ, Gunasekaran B, et al.
    Animals (Basel), 2021 Jul 14;11(7).
    PMID: 34359224 DOI: 10.3390/ani11072097
    Nanotechnology is a rapidly developing field due to the emergence of various resistant pathogens and the failure of commercial methods of treatment. AgNPs have emerged as one of the best nanotechnology metal nanoparticles due to their large surface-to-volume ratio and success and efficiency in combating various pathogens over the years, with the biological method of synthesis being the most effective and environmentally friendly method. The primary mode of action of AgNPs against pathogens are via their cytotoxicity, which is influenced by the size and shape of the nanoparticles. The cytotoxicity of the AgNPs gives rise to various theorized mechanisms of action of AgNPs against pathogens such as activation of reactive oxygen species, attachment to cellular membranes, intracellular damage and inducing the viable but non-culturable state (VBNC) of pathogens. This review will be centred on the various theorized mechanisms of actions and its application in the aquaculture, livestock and poultry industries. The application of AgNPs in aquaculture is focused around water treatment, disease control and aquatic nutrition, and in the livestock application it is focused on livestock and poultry.
  19. Sawalha H, Abiri R, Sanusi R, Shaharuddin NA, Noor AAM, Ab Shukor NA, et al.
    Plants (Basel), 2021 May 07;10(5).
    PMID: 34066925 DOI: 10.3390/plants10050929
    Nanotechnology is a promising tool that has opened the doors of improvement to the quality of human's lives through its potential in numerous technological aspects. Green chemistry of nanoscale materials (1-100 nm) is as an effective and sustainable strategy to manufacture homogeneous nanoparticles (NPs) with unique properties, thus making the synthesis of green NPs, especially metal nanoparticles (MNPs), the scientist's core theme. Researchers have tested different organisms to manufacture MNPs and the results of experiments confirmed that plants tend to be the ideal candidate amongst all entities and are suitable to synthesize a wide variety of MNPs. Natural and cultivated Eucalyptus forests are among woody plants used for landscape beautification and as forest products. The present review has been written to reflect the efficacious role of Eucalyptus in the synthesis of MNPs. To better understand this, the route of extracting MNPs from plants, in general, and Eucalyptus, in particular, are discussed. Furthermore, the crucial factors influencing the process of MNP synthesis from Eucalyptus as well as their characterization and recent applications are highlighted. Information gathered in this review is useful to build a basis for new prospective research ideas on how to exploit this woody species in the production of MNPs. Nevertheless, there is a necessity to feed the scientific field with further investigations on wider applications of Eucalyptus-derived MNPs.
  20. Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    Biology (Basel), 2021 Apr 22;10(5).
    PMID: 33922046 DOI: 10.3390/biology10050354
    The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links