Displaying publications 1 - 20 of 105 in total

Abstract:
Sort:
  1. Abdul Wahit MA, Ahmad SA, Marhaban MH, Wada C, Izhar LI
    Sensors (Basel), 2020 Jul 27;20(15).
    PMID: 32727150 DOI: 10.3390/s20154174
    Trans-radial prosthesis is a wearable device that intends to help amputees under the elbow to replace the function of the missing anatomical segment that resembles an actual human hand. However, there are some challenging aspects faced mainly on the robot hand structural design itself. Improvements are needed as this is closely related to structure efficiency. This paper proposes a robot hand structure with improved features (four-bar linkage mechanism) to overcome the deficiency of using the cable-driven actuated mechanism that leads to less structure durability and inaccurate motion range. Our proposed robot hand structure also took into account the existing design problems such as bulky structure, unindividual actuated finger, incomplete fingers and a lack of finger joints compared to the actual finger in its design. This paper presents the improvements achieved by applying the proposed design such as the use of a four-bar linkage mechanism instead of using the cable-driven mechanism, the size of an average human hand, five-fingers with completed joints where each finger is moved by motor individually, joint protection using a mechanical stopper, detachable finger structure from the palm frame, a structure that has sufficient durability for everyday use and an easy to fabricate structure using 3D printing technology. The four-bar linkage mechanism is the use of the solid linkage that connects the actuator with the structure to allow the structure to move. The durability was investigated using static analysis simulation. The structural details and simulation results were validated through motion capture analysis and load test. The motion analyses towards the 3D printed robot structure show 70-98% similar motion range capability to the designed structure in the CAD software, and it can withstand up to 1.6 kg load in the simulation and the real test. The improved robot hand structure with optimum durability for prosthetic uses was successfully developed.
  2. Jamaluddin FN, Ibrahim F, Ahmad SA
    J Healthc Eng, 2023;2023:1951165.
    PMID: 36756137 DOI: 10.1155/2023/1951165
    In sports, fatigue management is vital as adequate rest builds strength and enhances performance, whereas inadequate rest exposes the body to prolonged fatigue (PF) or also known as overtraining. This paper presents PF identification and classification based on surface electromyography (EMG) signals. An experiment was performed on twenty participants to investigate the behaviour of surface EMG during the inception of PF. PF symptoms were induced in accord with a five-day Bruce Protocol treadmill test on four lower extremity muscles: the biceps femoris (BF), rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL). The results demonstrate that the experiment successfully induces soreness, unexplained lethargy, and performance decrement and also indicate that the progression of PF can be observed based on changes in frequency features (ΔF med and ΔF mean) and time features (ΔRMS and ΔMAV) of surface EMG. This study also demonstrates the ability of wavelet index features in PF identification. Using a naïve Bayes (NB) classifier exhibits the highest accuracy based on time and frequency features with 98% in distinguishing PF on RF, 94% on BF, 9% on VL, and 97% on VM. Thus, this study has positively indicated that surface EMG can be used in identifying the inception of PF. The implication of the findings is significant in sports to prevent a greater risk of PF.
  3. Verasoundarapandian G, Wong CY, Shaharuddin NA, Gomez-Fuentes C, Zulkharnain A, Ahmad SA
    PMID: 33572432 DOI: 10.3390/ijerph18041671
    The globe is presently reliant on natural resources, fossil fuels, and crude oil to support the world's energy requirements. Human exploration for oil resources is always associated with irreversible effects. Primary sources of hydrocarbon pollution are instigated through oil exploration, extraction, and transportation in the Arctic region. To address the state of pollution, it is necessary to understand the mechanisms and processes of the bioremediation of hydrocarbons. The application of various microbial communities originated from the Arctic can provide a better interpretation on the mechanisms of specific microbes in the biodegradation process. The composition of oil and consequences of hydrocarbon pollutants to the various marine environments are also discussed in this paper. An overview of emerging trends on literature or research publications published in the last decade was compiled via bibliometric analysis in relation to the topic of interest, which is the microbial community present in the Arctic and Antarctic marine environments. This review also presents the hydrocarbon-degrading microbial community present in the Arctic, biodegradation metabolic pathways (enzymatic level), and capacity of microbial degradation from the perspective of metagenomics. The limitations are stated and recommendations are proposed for future research prospects on biodegradation of oil contaminants by microbial community at the low temperature regions of the Arctic.
  4. Nazmi N, Abdul Rahman MA, Yamamoto S, Ahmad SA, Zamzuri H, Mazlan SA
    Sensors (Basel), 2016 Aug 17;16(8).
    PMID: 27548165 DOI: 10.3390/s16081304
    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above.
  5. Ngalimat MS, Yahaya RSR, Baharudin MMA, Yaminudin SM, Karim M, Ahmad SA, et al.
    Microorganisms, 2021 Mar 17;9(3).
    PMID: 33802666 DOI: 10.3390/microorganisms9030614
    Bacteria under the operational group Bacillus amyloliquefaciens (OGBa) are all Gram-positive, endospore-forming, and rod-shaped. Taxonomically, the OGBa belongs to the Bacillus subtilis species complex, family Bacillaceae, class Bacilli, and phylum Firmicutes. To date, the OGBa comprises four bacterial species: Bacillus amyloliquefaciens, Bacillus siamensis, Bacillus velezensis and Bacillus nakamurai. They are widely distributed in various niches including soil, plants, food, and water. A resurgence in genome mining has caused an increased focus on the biotechnological applications of bacterial species belonging to the OGBa. The members of OGBa are known as plant growth-promoting bacteria (PGPB) due to their abilities to fix nitrogen, solubilize phosphate, and produce siderophore and phytohormones, as well as antimicrobial compounds. Moreover, they are also reported to produce various enzymes including α-amylase, protease, lipase, cellulase, xylanase, pectinase, aminotransferase, barnase, peroxidase, and laccase. Antimicrobial compounds that able to inhibit the growth of pathogens including non-ribosomal peptides and polyketides are also produced by these bacteria. Within the OGBa, various B. velezensis strains are promising for use as probiotics for animals and fishes. Genome mining has revealed the potential applications of members of OGBa for removing organophosphorus (OPs) pesticides. Thus, this review focused on the applicability of members of OGBa as plant growth promoters, biocontrol agents, probiotics, bioremediation agents, as well as producers of commercial enzymes and antibiotics. Here, the bioformulations and commercial products available based on these bacteria are also highlighted. This review will better facilitate understandings of members of OGBa and their biotechnological applications.
  6. Hushiarian R, Yusof NA, Abdullah AH, Ahmad SA, Dutse SW
    Molecules, 2014 Apr 09;19(4):4355-68.
    PMID: 24722589 DOI: 10.3390/molecules19044355
    Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.
  7. Dahalan FA, Abdullah N, Yuzir A, Olsson G, Salmiati, Hamdzah M, et al.
    Bioresour Technol, 2015 Apr;181:291-6.
    PMID: 25661308 DOI: 10.1016/j.biortech.2015.01.062
    Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions. Two identical bioreactors namely Rnp and Rp were operated under non-phototrophic and phototrophic conditions, respectively. An illustrative scheme was developed to comprehend the mechanism of size development that delineates the granular size throughout the granulation. Observations on granules' size variation have shown that activated sludge revolutionised into the form of aerobic granules through the increase of biomass concentration in bioreactors which also determined the changes of granule size. Both reactors demonstrated that size transformed in a similar trend when tested with and without illumination. Thus, different types of aerobic granules may increase in size in the same way as recommended in the aerobic granule size development scheme.
  8. Mohktar MS, Ibrahim F, Mohd Rozi NF, Mohd Yusof J, Ahmad SA, Su Yen K, et al.
    Med Sci Monit, 2013 Dec 13;19:1159-66.
    PMID: 24335927 DOI: 10.12659/MSM.889628
    BACKGROUND: Currently, the reference standard used to clinically assess sexual function among women is a qualitative questionnaire. Hence, a generalised and quantitative measurement tool needs to be available as an alternative. This study investigated whether an electromyography (EMG) measurement technique could be used to help quantify women's sexual function.

    MATERIAL AND METHODS: A preliminary intervention study was conducted on 12 female subjects, who were randomised into a control (n=6) and an intervention (n=6) group. Intervention involved a set regimen of pelvic floor muscle exercises (Kegel) and the control group did not have any treatment. All subjects were asked to answer a validated, self-rated Pelvic Organ Prolapse/Urinary Incontinence Sexual Function Questionnaire (PISQ). EMG measurements of the pelvic floor muscles (PFM) and the abdominal muscles were taken from all women at recruitment and 8 weeks after study commencement.

    RESULTS: After 8 weeks, most of the subjects in the control group did not display any noted positive difference in either PISQ score (4/6) or in their muscle strength (4/6). However, a noted progressive difference were observed in subjects who were placed in the Kegel group; PISQ score (5/6) and muscles strength (4/6).

    CONCLUSIONS: The noted difference in the Kegel group subjects was that if progress is observed in the sexual function, improvement is also observed in the strength of at least 2 types of muscles (either abdominal or PFM muscles). Thus, EMG measurement is a potential technique to quantify the changes in female sexual function. Further work will be conducted to validate this assumption.

  9. Darham S, Zakaria NN, Zulkharnain A, Sabri S, Khalil KA, Merican F, et al.
    Braz J Microbiol, 2023 Sep;54(3):2011-2026.
    PMID: 36973583 DOI: 10.1007/s42770-023-00949-9
    In Antarctica, human activities have been reported to be the major cause of the accumulation of heavy metal contaminants. A comprehensive bibliometric analysis of publications on heavy metal contamination in Antarctica from year 2000 to 2020 was performed to obtain an overview of the current landscape in this line of research. A total of 106 documents were obtained from Scopus, the largest citation database. Extracted data were analysed, and VOSviewer software was used to visualise trends. The result showed an increase in publications and citations in the past 20 years indicating the rising interest on heavy metal contamination in the Antarctic region. Based on the analysis of keywords, the publications largely discuss various types of heavy metals found in the Antarctic water and sediment. The analysis on subject areas detects multiple disciplines involved, wherein the environmental science was well-represented. The top countries and authors producing the most publication in this field were from Australia, China, Brazil and Chile. Numerous efforts have been exercised to investigate heavy metal pollution and its mitigation approaches in the region in the past decades. This paper not only is relevant for scholars to understand the development status and trends in this field but also offers clear insights on the future direction of Antarctic heavy metal contamination and remediation research.
  10. Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA
    PMID: 27051453 DOI: 10.1155/2016/8090841
    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.
  11. Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY
    Biomed Res Int, 2014;2014:480258.
    PMID: 24971331 DOI: 10.1155/2014/480258
    Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
  12. Puan SL, Erriah P, Baharudin MMA, Yahaya NM, Kamil WNIWA, Ali MSM, et al.
    Appl Microbiol Biotechnol, 2023 Sep;107(18):5569-5593.
    PMID: 37450018 DOI: 10.1007/s00253-023-12651-9
    Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
  13. Ahmad T, Ismail A, Ahmad SA, Khalil KA, Kee LT, Awad EA, et al.
    Food Chem, 2018 Nov 01;265:1-8.
    PMID: 29884359 DOI: 10.1016/j.foodchem.2018.05.046
    The autolysis of pretreated bovine skin (PBS) (treated with 0.1 M NaOH and 1% HCl), its endogenous proteases, inhibitors and their effects on quality attributes of gelatin were examined. PBS was subjected to different temperatures (20-90 °C) and pH (2-9) and treated with different protease inhibitors. Maximum autolytic activity of PBS was observed at 40 °C and pH 5. Ethylene-bis (oxyethylenenitrilo) tetraacetic acid (EGTA) was the most effective in impeding the degradation of γ-, β- and α- chains of PBS protein indicating that metallocollagenases were the predominant endogenous proteases in bovine skin. Gelatin was extracted in the absence (GAE) and presence (GPE) of EGTA, and EGTA with papain enzyme (GPEP). GPEP had a higher yield and lower gel strength than GEA and GPE. Metallocollagenases partook in the degradation of gelatin thereby affecting its functional properties. Pretreating PBS with or without EGTA, and papain influenced the quality attributes of gelatin.
  14. Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2017 Jun 08;17(6).
    PMID: 28594352 DOI: 10.3390/s17061326
    Characterizing dementia is a global challenge in supporting personalized health care. The electroencephalogram (EEG) is a promising tool to support the diagnosis and evaluation of abnormalities in the human brain. The EEG sensors record the brain activity directly with excellent time resolution. In this study, EEG sensor with 19 electrodes were used to test the background activities of the brains of five vascular dementia (VaD), 15 stroke-related patients with mild cognitive impairment (MCI), and 15 healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the recorded EEG signals using a novel technique that combines automatic independent component analysis (AICA) and wavelet transform (WT), that is, the AICA-WT technique; second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. The proposed AICA-WT technique is a four-stage approach. In the first stage, the independent components (ICs) were estimated. In the second stage, three-step artifact identification metrics were applied to detect the artifactual components. The components identified as artifacts were marked as critical and denoised through DWT in the third stage. In the fourth stage, the corrected ICs were reconstructed to obtain artifact-free EEG signals. The performance of the proposed AICA-WT technique was compared with those of two other techniques based on AICA and WT denoising methods using cross-correlation X C o r r and peak signal to noise ratio ( P S N R ) (ANOVA, p ˂ 0.05). The AICA-WT technique exhibited the best artifact removal performance. The assumption that there would be a deceleration of EEG dominant frequencies in VaD and MCI patients compared with control subjects was assessed with AICA-WT (ANOVA, p ˂ 0.05). Therefore, this study may provide information on post-stroke dementia particularly VaD and stroke-related MCI patients through spectral analysis of EEG background activities that can help to provide useful diagnostic indexes by using EEG signal processing.
  15. Karamba KI, Ahmad SA, Zulkharnain A, Yasid NA, Ibrahim S, Shukor MY
    3 Biotech, 2018 Jan;8(1):11.
    PMID: 29259886 DOI: 10.1007/s13205-017-1025-x
    The evaluation of degradation and growth kinetics of Serratia marcescens strain AQ07 was carried out using three half-order models at all the initial concentrations of cyanide with the values of regression exceeding 0.97. The presence of varying cyanide concentrations reveals that the growth and degradation of bacteria were affected by the increase in cyanide concentration with a total halt at 700 ppm KCN after 72 h incubation. In this study, specific growth and degradation rates were found to trail the substrate inhibition kinetics. These two rates fitted well to the kinetic models of Teissier, Luong, Aiba and Heldane, while the performance of Monod model was found to be unsatisfactory. These models were used to clarify the substrate inhibition on the bacteria growth. The analyses of these models have shown that Luong model has fitted the experimental data with the highest coefficient of determination (R2) value of 0.9794 and 0.9582 with the lowest root mean square error (RMSE) value of 0.000204 and 0.001, respectively, for the specific rate of degradation and growth. It is the only model that illustrates the maximum substrate concentration (Sm) of 713.4 and empirical constant (n) of 1.516. Tessier and Aiba fitted the experimental data with a R2 value of 0.8002 and 0.7661 with low RMSE of 0.0006, respectively, for specific biodegradation rate, while having a R2 value of 0.9 and RMSE of 0.001, respectively, for specific growth rate. Haldane has the lowest R2 value of 0.67 and 0.78 for specific biodegradation and growth rate with RMSE of 0.0006 and 0.002, respectively. This indicates the level of the bacteria stability in varying concentrations of cyanide and the maximum cyanide concentration it can tolerate within a specific time period. The biokinetic constant predicted from this model demonstrates a good ability of the locally isolated bacteria in cyanide remediation in industrial effluents.
  16. Yap HS, Zakaria NN, Zulkharnain A, Sabri S, Gomez-Fuentes C, Ahmad SA
    Biology (Basel), 2021 Apr 22;10(5).
    PMID: 33922046 DOI: 10.3390/biology10050354
    The increased usage of petroleum oils in cold regions has led to widespread oil pollutants in soils. The harsh environmental conditions in cold environments allow the persistence of these oil pollutants in soils for more than 20 years, raising adverse threats to the ecosystem. Microbial bioremediation was proposed and employed as a cost-effective tool to remediate petroleum hydrocarbons present in soils without significantly posing harmful side effects. However, the conventional hydrocarbon bioremediation requires a longer time to achieve the clean-up standard due to various environmental factors in cold regions. Recent biotechnological improvements using biostimulation and/or bioaugmentation strategies are reported and implemented to enhance the hydrocarbon removal efficiency under cold conditions. Thus, this review focuses on the enhanced bioremediation for hydrocarbon-polluted soils in cold regions, highlighting in situ and ex situ approaches and few potential enhancements via the exploitation of molecular and microbial technology in response to the cold condition. The bibliometric analysis of the hydrocarbon bioremediation research in cold regions is also presented.
  17. Hassan I, Wan Ibrahim WN, Yusuf FM, Ahmad SA, Ahmad S
    J Toxicol, 2020;2020:8815313.
    PMID: 33029137 DOI: 10.1155/2020/8815313
    Background: Pathophysiological changes leading to the death of nerve cells present in the brain and spinal cord are referred to as neurodegenerative diseases. Presently, treatment of these diseases is not effective and encounters many challenges due to the cost of drug and side effects. Thus, the search for the alternative agents to replace synthetic drugs is in high demand. Therefore, the aim of this study is to evaluate the anticholinesterase properties of Ginkgo biloba seed.

    Methods: The seed was extracted with 80% methanol. Toxicity studies and evaluation of anticholinesterase activities were carried out in adult Javanese medaka (Oryzias javanicus). Phytochemical study to identify the bioactive lead constituents of the crude extract was also carried out using high performance liquid chromatography (HPLC).

    Results: The result shows activities with high significant differences at P < 0.001 between the treated and nontreated groups. A bioactive compound (vitaxin) was identified with the aid of HPLC method.

    Conclusion: The presence of bioactive compound vitaxin is among the major secondary metabolites that contribute to increasing activities of this plant extract. High anticholinesterase activities and low toxicity effect of this plant show its benefit to be used as natural medicine or supplements.

  18. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
  19. Ibrahim S, Abdul Khalil K, Zahri KNM, Gomez-Fuentes C, Convey P, Zulkharnain A, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858796 DOI: 10.3390/molecules25173878
    With the progressive increase in human activities in the Antarctic region, the possibility of domestic oil spillage also increases. Developing means for the removal of oils, such as canola oil, from the environment and waste "grey" water using biological approaches is therefore desirable, since the thermal process of oil degradation is expensive and ineffective. Thus, in this study an indigenous cold-adapted Antarctic soil bacterium, Rhodococcus erythropolis strain AQ5-07, was screened for biosurfactant production ability using the multiple approaches of blood haemolysis, surface tension, emulsification index, oil spreading, drop collapse and "MATH" assay for cellular hydrophobicity. The growth kinetics of the bacterium containing different canola oil concentration was studied. The strain showed β-haemolysis on blood agar with a high emulsification index and low surface tension value of 91.5% and 25.14 mN/m, respectively. Of the models tested, the Haldane model provided the best description of the growth kinetics, although several models were similar in performance. Parameters obtained from the modelling were the maximum specific growth rate (qmax), concentration of substrate at the half maximum specific growth rate, Ks% (v/v) and the inhibition constant Ki% (v/v), with values of 0.142 h-1, 7.743% (v/v) and 0.399% (v/v), respectively. These biological coefficients are useful in predicting growth conditions for batch studies, and also relevant to "in field" bioremediation strategies where the concentration of oil might need to be diluted to non-toxic levels prior to remediation. Biosurfactants can also have application in enhanced oil recovery (EOR) under different environmental conditions.
  20. Manogaran M, Ahmad SA, Yasid NA, Yakasai HM, Shukor MY
    3 Biotech, 2018 Feb;8(2):117.
    PMID: 29430378 DOI: 10.1007/s13205-018-1141-2
    In this novel study, we report on the use of two molybdenum-reducing bacteria with the ability to utilise the herbicide glyphosate as the phosphorus source. The bacteria reduced sodium molybdate to molybdenum blue (Mo-blue), a colloidal and insoluble product, which is less toxic. The characterisation of the molybdenum-reducing bacteria was carried out using resting cells immersed in low-phosphate molybdenum media. Two glyphosate-degrading bacteria, namelyBurkholderia vietnamiensisAQ5-12 andBurkholderiasp. AQ5-13, were able to use glyphosate as a phosphorous source to support molybdenum reduction to Mo-blue. The bacteria optimally reduced molybdenum between the pHs of 6.25 and 8. The optimum concentrations of molybdate for strainBurkholderia vietnamiensis strainAQ5-12 was observed to be between 40 and 60 mM, while forBurkholderiasp. AQ5-13, the optimum molybdate concentration occurred between 40 and 50 mM. Furthermore, 5 mM of phosphate was seen as the optimum concentration supporting molybdenum reduction for both bacteria. The optimum temperature aiding Mo-blue formation ranged from 30 to 40 °C forBurkholderia vietnamiensis strainAQ5-12, whereas forBurkholderiasp. AQ5-13, the range was from 35 to 40 °C. Glucose was the best electron donor for supporting molybdate reduction, followed by sucrose, fructose and galactose for both strains. Ammonium sulphate was the best nitrogen source in supporting molybdenum reduction. Interestingly, increasing the glyphosate concentrations beyond 100 and 300 ppm forBurkholderia vietnamiensis strainAQ5-12 andBurkholderiasp. AQ5-13, respectively, significantly inhibited molybdenum reduction. The ability of these bacteria to reduce molybdenum while degrading glyphosate is a useful process for the bioremediation of both toxicants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links