Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Umar A, Ahmed QU, Muhammad BY, Dogarai BB, Soad SZ
    J Ethnopharmacol, 2010 Aug 19;131(1):140-5.
    PMID: 20600771 DOI: 10.1016/j.jep.2010.06.016
    The present study was aimed to investigate the anti-diabetic potential of the leaves of Tetracera scandens Linn. Merr. (Dilleniaceae) in vivo with regard to prove its efficacy by local herbalists in the treatment of diabetes frailties.
  2. Yankuzo H, Ahmed QU, Santosa RI, Akter SF, Talib NA
    J Ethnopharmacol, 2011 Apr 26;135(1):88-94.
    PMID: 21354289 DOI: 10.1016/j.jep.2011.02.020
    Murraya koenigii (Linn.) Spreng (curry leaf) is widely used as a nephroprotective agent in kidney's infirmities among diabetics by the traditional practitioners in Malaysia. However, the latter role of curry leaf has been grossly under reported and is yet to receive proper scientific evaluation.
  3. Sule A, Ahmed QU, Latip J, Samah OA, Omar MN, Umar A, et al.
    Pharm Biol, 2012 Jul;50(7):850-6.
    PMID: 22587518 DOI: 10.3109/13880209.2011.641021
    Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners.
  4. Azzubaidi MS, Saxena AK, Talib NA, Ahmed QU, Dogarai BB
    Acta Neurobiol Exp (Wars), 2012;72(2):154-65.
    PMID: 22810217
    The fixed oil of black cumin seeds, Nigella sativa L. (NSO), has shown considerable antioxidant and anti-inflammatory activities. Chronic cerebral hypoperfusion has been linked to neurodegenerative disorders including Alzheimer's disease (AD) and its subsequent cognitive impairment in which oxidative stress and neuroinflammation are the principal culprits. Cerebrovascular hypoperfusion was experimentally achieved by bilateral common carotid arteries occlusion (2VO) in rats. Morris water maze (MWM) test was employed to assess the effects of NSO on spatial cognitive function before and after 2VO intervention. Rats were divided into long-term memory (LTM) and short-term memory (STM) groups, each was further subdivided into 3 subgroups: sham control, untreated 2VO and NSO treated 2VO group. All subgroups were tested with MWM at the tenth postoperative week. Working memory test results for both sham control and NSO treated groups showed significantly lower escape latency time and total distance travelled than untreated 2VO group. Similarly, LTM and STM MWM tests for sham control and NSO treated groups revealed significantly better maze test performance as compared to untreated 2VO group. Sham control and NSO treated 2VO groups demonstrated superior probe memory test performance as compared to untreated 2VO group. The fixed oil of Nigella sativa seeds has demonstrated noticeable spatial cognitive preservation in rats challenged with chronic cerebral hypoperfusion which indicates a promising prospective neuroprotective effect.
  5. Ahmed, QU, Radhiyah I, Siti Zaiton MS
    MyJurnal
    Leaves of Thottea dependens have been used as folk medicine in Malaysia for the treatment of
    several conditions involving pain and inflammation with accompanying pyrexia. However, there is no scientific
    evidence for its effectiveness to treat fever. Hence, the purpose of this study was to evaluate the anti-pyretic
    activity of methanol (MeOH) and aqueous (Aq) extracts of T. dependens leaves in albino mice (ICR strain).
  6. Taher M, Mohamed Amiroudine MZ, Tengku Zakaria TM, Susanti D, Ichwan SJ, Kaderi MA, et al.
    PMID: 25873982 DOI: 10.1155/2015/740238
    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[(3)H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future.
  7. Alhassan AM, Ahmed QU
    J Pharm Bioallied Sci, 2016 Oct-Dec;8(4):265-271.
    PMID: 28216948 DOI: 10.4103/0975-7406.199342
    Averrhoa bilimbi Linn. is principally cultivated for medicinal purposes in many tropical and subtropical countries of the world. Literature survey about this plant shows that A. bilimbi is mainly used as a folk medicine in the treatment of diabetes mellitus, hypertension, and as an antimicrobial agent. The prime objective of this review is to accumulate and organize literature based on traditional claims and correlate those with current findings on the use of A. bilimbi in the management of different ailments. Through interpreting already published scientific manuscripts (1995 through 2015) retrieved from the different scientific search engines, namely Medline, PubMed, EMBASE, and Science Direct databases, published articles and reports covering traditional and scientific literature related to A. bilimbi's potential role against various ailments have been thoroughly evaluated, interpreted, and discussed. Several pharmacological studies have demonstrated the ability of this plant to act as antidiabetic, antihypertensive, thrombolytic, antimicrobial, antioxidant, hepatoprotective, and hypolipidemic agent. A. bilimbi holds great value in the complementary and alternative medicine as evidenced by the substantial amount of research on it. Therefore, we aimed to compile an up-to-date and comprehensive review of A. bilimbi that covers its traditional and folk medicine uses, phytochemistry, and pharmacology. Hence, this paper presents an up-to-date and comprehensive review of the ethnomedicinal uses, different chemical constituents, and pharmacological activities of A. bilimbi. So far, the biologically active agents have not been isolated from this plant and this can be a good scientific study for the future antidiabetic, antihypertensive, and antimicrobial implications. Hence, this review targets at emphasizing the diverse traditional claims and pharmacological activities of A. bilimbi with respect to carrying out more scientific studies to isolate active principles through advanced technology.
  8. Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, et al.
    BMC Complement Altern Med, 2017 Aug 30;17(1):431.
    PMID: 28854906 DOI: 10.1186/s12906-017-1929-3
    BACKGROUND: Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds.

    METHODS: The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through (1)H-and (13)C-NMR spectroscopy.

    RESULTS: Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P 

  9. Sarian MN, Ahmed QU, Mat So'ad SZ, Alhassan AM, Murugesu S, Perumal V, et al.
    Biomed Res Int, 2017;2017:8386065.
    PMID: 29318154 DOI: 10.1155/2017/8386065
    The best described pharmacological property of flavonoids is their capacity to act as potent antioxidant that has been reported to play an important role in the alleviation of diabetes mellitus. Flavonoids biochemical properties are structure dependent; however, they are yet to be thoroughly understood. Hence, the main aim of this work was to investigate the antioxidant and antidiabetic properties of some structurally related flavonoids to identify key positions responsible, their correlation, and the effect of methylation and acetylation on the same properties. Antioxidant potential was evaluated through dot blot, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ABTS+ radical scavenging, ferric reducing antioxidant power (FRAP), and xanthine oxidase inhibitory (XOI) assays. Antidiabetic effect was investigated through α-glucosidase and dipeptidyl peptidase-4 (DPP-4) assays. Results showed that the total number and the configuration of hydroxyl groups played an important role in regulating antioxidant and antidiabetic properties in scavenging DPPH radical, ABTS+ radical, and FRAP assays and improved both α-glucosidase and DPP-4 activities. Presence of C-2-C-3 double bond and C-4 ketonic group are two essential structural features in the bioactivity of flavonoids especially for antidiabetic property. Methylation and acetylation of hydroxyl groups were found to diminish the in vitro antioxidant and antidiabetic properties of the flavonoids.
  10. Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS
    Biomed Pharmacother, 2018 May;101:833-841.
    PMID: 29635892 DOI: 10.1016/j.biopha.2018.02.137
    Diabetes mellitus is a chronic disease which has high prevalence. The deficiency in insulin production or impaired insulin function is the underlying cause of this disease. Utilization of plant sources as a cure of diabetes has rich evidence in the history. Recently, the traditional medicinal plants have been investigated scientifically to understand the underlying mechanism behind antidiabetic potential. In this regard, a substantial number of in vivo and in vitro models have been introduced for investigating the bottom-line mechanism of the antidiabetic effect. A good number of methods have been reported to be used successfully to determine antidiabetic effects of plant extracts or isolated compounds. This review encompasses all the possible methods with a list of medicinal plants which may contribute to discovering a novel drug to treat diabetes more efficaciously with the minimum or no side effects.
  11. Murugesu S, Ibrahim Z, Ahmed QU, Nik Yusoff NI, Uzir BF, Perumal V, et al.
    Molecules, 2018 Sep 19;23(9).
    PMID: 30235889 DOI: 10.3390/molecules23092402
    BACKGROUND: Clinacanthus nutans (C. nutans) is an Acanthaceae herbal shrub traditionally consumed to treat various diseases including diabetes in Malaysia. This study was designed to evaluate the α-glucosidase inhibitory activity of C. nutans leaves extracts, and to identify the metabolites responsible for the bioactivity.

    METHODS: Crude extract obtained from the dried leaves using 80% methanolic solution was further partitioned using different polarity solvents. The resultant extracts were investigated for their α-glucosidase inhibitory potential followed by metabolites profiling using the gas chromatography tandem with mass spectrometry (GC-MS).

    RESULTS: Multivariate data analysis was developed by correlating the bioactivity, and GC-MS data generated a suitable partial least square (PLS) model resulting in 11 bioactive compounds, namely, palmitic acid, phytol, hexadecanoic acid (methyl ester), 1-monopalmitin, stigmast-5-ene, pentadecanoic acid, heptadecanoic acid, 1-linolenoylglycerol, glycerol monostearate, alpha-tocospiro B, and stigmasterol. In-silico study via molecular docking was carried out using the crystal structure Saccharomyces cerevisiae isomaltase (PDB code: 3A4A). Interactions between the inhibitors and the protein were predicted involving residues, namely LYS156, THR310, PRO312, LEU313, GLU411, and ASN415 with hydrogen bond, while PHE314 and ARG315 with hydrophobic bonding.

    CONCLUSION: The study provides informative data on the potential α-glucosidase inhibitors identified in C. nutans leaves, indicating the plant's therapeutic effect to manage hyperglycemia.

  12. Ahmed QU, Alhassan AM, Khatib A, Shah SAA, Hasan MM, Sarian MN
    Antioxidants (Basel), 2018 Oct 08;7(10).
    PMID: 30297618 DOI: 10.3390/antiox7100137
    The objective of the present study was to investigate the antiradical and xanthine oxidase inhibitory effects of Averrhoa bilimbi leaves. Hence, crude methanolic leaves extract and its resultant fractions, namely hexane, chloroform, and n-butanol were evaluated for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect and xanthine oxidase inhibitory activity. The active constituents were tentatively identified through LC-QTOF-MS/MS and molecular docking approaches. The n-butanol fraction of A. bilimbi crude methanolic leaves extract displayed significant DPPH radical scavenging effect with IC50 (4.14 ± 0.21 μg/mL) (p < 0.05), as well as xanthine oxidase inhibitory activity with IC50 (64.84 ± 3.93 μg/mL) (p < 0.05). Afzelechin 3-O-alpha-l-rhamnopyranoside and cucumerin A were tentatively identified as possible metabolites that contribute to the antioxidant activity of the n-butanol fraction.
  13. Alhassan AM, Ahmed QU, Latip J, Shah SAA
    Nat Prod Res, 2019 Jan;33(1):1-8.
    PMID: 29417849 DOI: 10.1080/14786419.2018.1437427
    The bioactivity guided fractionation of Tetracera indica leaves crude ethanolic extract has afforded the isolation and characterization of six compounds including a new natural product viz., 5,7-dihydroxyflavone-O-8-sulphate (1) and five known flavonoids (2-6). The structures of the compounds were elucidated using 1D and 2D NMR and HRESIMS spectroscopic analyses. All the isolated compounds were evaluated for their in vitro inhibitory activity against alpha-glucosidase. Compound 1, 5 and 6 showed strong alpha-glucosidase inhibitory activity, 3 and 4 displayed weak activity while compound 2 was inactive. The interactions of the active compounds with alpha-glucosidase were further investigated using molecular docking to confirm their antidiabetic potential.
  14. Roheem FO, Mat Soad SZ, Ahmed QU, Ali Shah SA, Latip J, Zakaria ZA
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871172 DOI: 10.3390/molecules24061006
    Digestive enzymes and free radical inhibitors are used to prevent complications resulting from diabetes. Entadaspiralis (family Leguminosae), which is a well-known medicinal plant in herbal medicine due to its various traditional and medicinal applications, was studied. Crude extracts were successively obtained from the stem bark using petroleum ether, chloroform and methanol as extracting solvents. The antioxidant activity of all the extracts, fractions and isolated compounds were estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene and 2,2'-azinobis(-3-ethylbenzothiazine-6-sulfonic acid) (ABTS) assays, while digestive enzymes inhibitory activity was assessed using α-amylase and α-glucosidase inhibitory methods. Structure elucidation of pure compounds was achieved through different spectroscopic analysis methods. Fractionation and purification of the most active methanol extract resulted in the isolation of a ferulic ester namely; (e)-hexyl 3-(4-hydroxy-3-methoxyphenyl) acrylate (FEQ-2) together with five known phenolic constituents, identified as kaempferol (FEQ-3), 5,4'-dihydroxy-3,7,3'-trimethoxyflavone (FEQ-2), gallic acid (FEQ-5), (+)-catechin (FEQ-7) and (-)-epicatechin (FEQ-8). FEQ-5 exhibited the strongest antioxidant and enzyme inhibitory activities followed by FEQ-3 and FEQ-4. FEQ-2 also displayed potent free radical scavenging activity with IC50 values of 13.79 ± 2.13 (DPPH) and 4.69 ± 1.25 (ABTS) µg/mL, respectively. All other compounds were found active either against free radicals or digestive enzymes.
  15. Murugesu S, Ibrahim Z, Ahmed QU, Uzir BF, Nik Yusoff NI, Perumal V, et al.
    J Pharm Anal, 2019 Apr;9(2):91-99.
    PMID: 31011465 DOI: 10.1016/j.jpha.2018.11.001
    The present study used in vitro and in silico techniques, as well as the metabolomics approach to characterise α-glucosidase inhibitors from different fractions of Clinacanthus nutans. C. nutans is a medicinal plant belonging to the Acanthaceae family, and is traditionally used to treat diabetes in Malaysia. n-Hexane, n-hexane: ethyl acetate (1:1, v/v), ethyl acetate, ethyl acetate: methanol (1:1, v/v), and methanol fractions were obtained via partitioning of the 80% methanolic crude extract. The in vitro α-glucosidase inhibitory activity was analyzed using all the fractions collected, followed by profiling of the metabolites using liquid chromatography combined with mass spectrometry. The partial least square (PLS) statistical model was developed using the SIMCA P+14.0 software and the following four inhibitors were obtained: (1) 4,6,8-Megastigmatrien-3-one; (2) N-Isobutyl-2-nonen-6,8-diynamide; (3) 1',2'-bis(acetyloxy)-3',4'-didehydro-2'-hydro-β, ψ-carotene; and (4) 22-acetate-3-hydroxy-21-(6-methyl-2,4-octadienoate)-olean-12-en-28-oic acid. The in silico study performed via molecular docking with the crystal structure of yeast isomaltase (PDB code: 3A4A) involved a hydrogen bond and some hydrophobic interactions between the inhibitors and protein. The residues that interacted include ASN259, HID295, LYS156, ARG335, and GLY209 with a hydrogen bond, while TRP15, TYR158, VAL232, HIE280, ALA292, PRO312, LEU313, VAL313, PHE314, ARG315, TYR316, VAL319, and TRP343 with other forms of bonding.
  16. Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, et al.
    BMC Complement Altern Med, 2019 Apr 02;19(1):79.
    PMID: 30940120 DOI: 10.1186/s12906-019-2486-8
    BACKGROUND: Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity.

    METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.

    RESULTS: PECN significantly (p  0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p  0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.

    CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.

  17. Benchoula K, Khatib A, Quzwain FMC, Che Mohamad CA, Wan Sulaiman WMA, Abdul Wahab R, et al.
    Molecules, 2019 Apr 17;24(8).
    PMID: 30999617 DOI: 10.3390/molecules24081506
    A standard protocol to develop type 1 diabetes in zebrafish is still uncertain due to unpredictable factors. In this study, an optimized protocol was developed and used to evaluate the anti-diabetic activity of Psychotria malayana leaf. The aims of this study were to develop a type 1 diabetic adult zebrafish model and to evaluate the anti-diabetic activity of the plant extract on the developed model. The ability of streptozotocin and alloxan at a different dose to elevate the blood glucose levels in zebrafish was evaluated. While the anti-diabetic activity of P. malayana aqueous extract was evaluated through analysis of blood glucose and LC-MS analysis fingerprinting. The results indicated that a single intraperitoneal injection of 300 mg/kg alloxan was the optimal dose to elevate the fasting blood glucose in zebrafish. Furthermore, the plant extract at 1, 2, and 3 g/kg significantly reduced blood glucose levels in the diabetic zebrafish. In addition, LC-MS-based fingerprinting indicated that 3 g/kg plant extract more effective than other doses. Phytosterols, sugar alcohols, sugar acid, free fatty acids, cyclitols, phenolics, and alkaloid were detected in the extract using GC-MS. In conclusion, P. malayana leaf aqueous extract showed anti-diabetic activity on the developed type 1 diabetic zebrafish model.
  18. Taha M, Rahim F, Ali M, Khan MN, Alqahtani MA, Bamarouf YA, et al.
    Molecules, 2019 Apr 18;24(8).
    PMID: 31003424 DOI: 10.3390/molecules24081528
    Chromen-4-one substituted oxadiazole analogs 1-19 have been synthesized, characterized and evaluated for β-glucuronidase inhibition. All analogs exhibited a variable degree of β-glucuronidase inhibitory activity with IC50 values ranging in between 0.8 ± 0.1-42.3 ± 0.8 μM when compared with the standard d-saccharic acid 1,4 lactone (IC50 = 48.1 ± 1.2 μM). Structure activity relationship has been established for all compounds. Molecular docking studies were performed to predict the binding interaction of the compounds with the active site of enzyme.
  19. Khan AYF, Ahmed QU, Narayanamurthy V, Razali S, Asuhaimi FA, Saleh MSM, et al.
    Biomed Pharmacother, 2019 Jun;114:108841.
    PMID: 30981106 DOI: 10.1016/j.biopha.2019.108841
    Porcupine bezoar (PB) is a calcified undigested material generally found in porcupine's (Hystrix brachyura) gastrointestinal tract. The bezoar is traditionally used in South East Asia and Europe for the treatment of cancer, poisoning, dengue, typhoid, etc. However, limited scientific studies have been performed to verify its anticancer potential to substantiate its traditional claims in the treatment of cancers. Hence, this study was aimed at investigating the in vitro and in vivo anticancer properties of two grassy PB aqueous extract (PB-A and PB-B) using A375 cancer cell line and zebrafish model, respectively. This paper presents the first report on in vitro A375 cell viability assay, apoptosis assay, cell cycle arrest assay, migration assay, invasion assay, qPCR experimental assay and in vivo anti-angiogenesis assay using the grassy PBs. Experimental findings revealed IC50 value are 26.59 ± 1.37 μg/mL and 30.12 ± 3.25 μg/mL for PB-A and PB-B respectively. PBs showed anti-proliferative activity with no significant cytotoxic effect on normal human dermal fibroblast (NHDF). PBs were also found to induce apoptosis via intrinsic pathway and arrest cell cycle at G2/M phase. Additionally, the findings indicated its ability to debilitate migration and invasion of A375 cells. Further evaluation using embryo zebrafish model revealed LC50 = 450.0 ± 2.50 μg/mL and 58.7 ± 5.0 μg/mL for PB-A and PB-B which also exerted anti-angiogenesis effect in zebrafish. Moreover, stearic acid, ursodeoxycholic acid and pregnenolone were identified as possible metabolites that might contribute to the anticancer effect of the both PBs. Overall, this study demonstrated that PB-A and PB-B possess potential in vitro and in vivo anticancer effects which are elicited through selective cytotoxic effect, induction of apoptosis, inhibition of migration and invasion and anti-angiogenesis. This study provides scientific evidence that the porcupine bezoar do possess anti-cancer efficacy and further justifies its traditional utility. However, more experiments with higher vertebrae models are still warranted to validate its traditional claims as an anticancer agent.
  20. Babar ZM, Azizi WM, Ichwan SJ, Ahmed QU, Azad AK, Mawa I
    Nat Prod Res, 2019 Aug;33(15):2266-2270.
    PMID: 30037274 DOI: 10.1080/14786419.2018.1493587
    The current study provides a way of extraction for both active NSO and WSE from Nigella sativa seeds using 98% methanol. About 1 kg of ground seeds was macerated by 1:2.5 w/v (g/mL) for 72 hours. After rotary evaporation and 7 days of continuous drying and chilling at 50 and 4 °C, NSO and WSE were obtained at the same instant. Solubility tests of 24 solvents and 11 thin layer chromatographic analyses while 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging assay of NSO (73.66) , WSE (33.32) and NSO + WSE (78.22) against ascorbic acid (IC50 = 4.28 mg/mL) was performed. WSE was found to be highly soluble in water and 5% NaOH exhibiting the same Rf value of 0.95 for EtOH:DMSO (9:1) against the honey. WSE has revealed more than twofold higher anti-oxidant activity than others. Formulation of WSE with Tualang honey may provide better targeted hydrophilic drug delivery systems.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links