Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Akhtar MN, Sathish T, Mohanavel V, Afzal A, Arul K, Ravichandran M, et al.
    Materials (Basel), 2021 Aug 10;14(16).
    PMID: 34442992 DOI: 10.3390/ma14164470
    With the advent of the industrial revolution 4.0, the goal of the manufacturing industry is to produce a large number of products in relatively less time. This study applies the Taguchi L27 orthogonal array methodological paradigm along with response surface design. This work optimizes the process parameters in the turning of Aluminum Alloy 7075 using a Computer Numerical Control (CNC) machine. The optimal parameters influenced the rate of metal removal, the roughness of the machined surface, and the force of cutting. This experimental investigation deals with the optimization of speed (800 rpm, 1200 rpm, and 1600 rpm) and feed (0.15, 0.20, and 0.25 mm/rev) in addition to cutting depth (1.0, 1.5, and 2.0 mm) on the turning of Aluminum 7075 alloy in a CNC machine. The outcome in terms of results such as the removal rate of material (maximum), roughness on the machined surface (minimum), along with cutting force (least amount) were improved by the L27 array Taguchi method. There were 27 specimens of Al7075 alloy produced as per the array, and the corresponding responses were measured with the help of various direct contact and indirect contact sensors. Results were concluded all the way through diagrams of main effects in favor of signal-to-noise ratios and diagrams of surfaces with contour diagrams for various combinations of responses.
  2. Aziz MNM, Rahim NFC, Hussin Y, Yeap SK, Masarudin MJ, Mohamad NE, et al.
    Pharmaceuticals (Basel), 2021 Jun 03;14(6).
    PMID: 34204873 DOI: 10.3390/ph14060532
    Osteosarcoma (OS) is a life-threatening malignant bone tumor associated with poor prognosis among children. The survival rate of the patient is still arguably low even with intensive treatment provided, plus with the inherent side effects from the chemotherapy, which gives more unfavorable outcomes. Hence, the search for potent anti-osteosarcoma agent with promising safety profile is still on going. Natural occurring substance like curcumin has gained a lot of attention due to its splendid safety profile as well as it pharmacological advantages such as anti-metastasis and anti-angiogenesis. However, natural curcumin was widely known for its poor cellular uptake, which undermines all potential that it possesses. This prompted the development of synthetically synthesized curcuminoid analog, known as (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2- en-1-one (DK1). In this present study, in vitro scratch assay, transwell migration/invasion assay, HUVEC tube formation assay, and ex vivo rat aortic ring assays were performed in order to investigate the anti-metastatic and anti-angiogenic potential of DK1. For further comprehension of DK1 mechanism on human osteosarcoma cell lines, microarray gene expression analysis, quantitative polymerase chain reaction (qPCR), and proteome profiler were adopted, providing valuable forecast from the expression of important genes and proteins related to metastasis and angiogenesis. Based on the data gathered from the bioassays, DK1 was able to inhibit the metastasis and angiogenesis of human osteosarcoma cell lines by significantly reducing the cell motility, number of migrated and invaded cells as well as the tube formation and micro-vessels sprouting. Additionally, DK1 also has significantly regulated several cancer pathways involved in OS proliferation, metastasis, and angiogenesis such as PI3K/Akt and NF-κB in both U-2 OS and MG-63. Regulation of PI3K/Akt caused up-regulation of genes related to metastasis inhibition, namely, PTEN, FOXO, PLK3, and GADD45A. Meanwhile, NF-κB pathway was regulated by mitigating the expression of NF-κB activator such as IKBKB and IKBKE in MG-63, whilst up-regulating the expression of NF-κB inhibitors such as NFKBIA and NFKBIE in U-2 OS. Finally, DK1 also has successfully hindered the metastatic and angiogenic capability of OS cell lines by down-regulating the expression of pro-metastatic genes and proteins like MMP3, COL11A1, FGF1, Endoglin, uPA, and IGFBP2 in U-2 OS. Whilst for MG-63, the significantly down-regulated oncogenes were Serpin E1, AKT2, VEGF, uPA, PD-ECGF, and Endoglin. These results suggest that curcumin analog DK1 may serve as a potential new anti-osteosarcoma agent due to its anti-metastatic and anti-angiogenic attributes.
  3. Akhtar MN, Khan M, Khan SA, Afzal A, Subbiah R, Ahmad SN, et al.
    Materials (Basel), 2021 May 18;14(10).
    PMID: 34070060 DOI: 10.3390/ma14102639
    In the present investigation, the non-recrystallization temperature (TNR) of niobium-microalloyed steel is determined to plan rolling schedules for obtaining the desired properties of steel. The value of TNR is based on both alloying elements and deformation parameters. In the literature, TNR equations have been developed and utilized. However, each equation has certain limitations which constrain its applicability. This study was completed using laboratory-grade low-carbon Nb-microalloyed steels designed to meet the API X-70 specification. Nb- microalloyed steel is processed by the melting and casting process, and the composition is found by optical emission spectroscopy (OES). Multiple-hit deformation tests were carried out on a Gleeble® 3500 system in the standard pocket-jaw configuration to determine TNR. Cuboidal specimens (10 (L) × 20 (W) × 20 (T) mm3) were taken for compression test (multiple-hit deformation tests) in gleeble. Microstructure evolutions were carried out by using OM (optical microscopy) and SEM (scanning electron microscopy). The value of TNR determined for 0.1 wt.% niobium bearing microalloyed steel is ~ 951 °C. Nb- microalloyed steel rolled at TNR produce partially recrystallized grain with ferrite nucleation. Hence, to verify the TNR value, a rolling process is applied with the finishing rolling temperature near TNR (~951 °C). The microstructure is also revealed in the pancake shape, which confirms TNR.
  4. Rahim NFC, Hussin Y, Aziz MNM, Mohamad NE, Yeap SK, Masarudin MJ, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652694 DOI: 10.3390/molecules26051261
    Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.
  5. Yeap SK, Mohd Ali N, Akhtar MN, Razak NA, Chong ZX, Ho WY, et al.
    Molecules, 2021 Feb 26;26(5).
    PMID: 33652854 DOI: 10.3390/molecules26051277
    (2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.
  6. Pui Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217904 DOI: 10.3390/molecules25225385
    The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9-4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
  7. Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S711-S717.
    PMID: 33828366 DOI: 10.4103/jpbs.JPBS_344_19
    Introduction: Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties.

    Objective: This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo.

    Materials and Methods: The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets.

    Results: It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test.

    Conclusion: Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.

  8. Nazeer U, Rasool N, Mujahid A, Mansha A, Zubair M, Kosar N, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752125 DOI: 10.3390/molecules25153521
    In the present study, 2-bromo-4-chlorophenyl-2-bromobutanoate (3) was synthesized via the reaction of 2-bromo-4-chlorophenol with 2-bromobutanoyl bromide in the presence of pyridine. A variety of 2-bromo-4-chlorophenyl-2-bromobutanoate derivatives (5a-f) were synthesized with moderate to good yields via a Pd-catalyzed Suzuki cross-coupling reaction. To find out the reactivity and electronic properties of the compounds, Frontier molecular orbital analysis, non-linear optical properties, and molecular electrostatic potential studies were performed.
  9. Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731323 DOI: 10.3390/molecules25153403
    Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
  10. Danish M, Akhtar MN, Hashim R, Saleh JM, Bakar EA
    MethodsX, 2020;7:100983.
    PMID: 32742942 DOI: 10.1016/j.mex.2020.100983
    This article encompasses the method related to image segmentation of the Field Emission Scanning Electron Microscope (FESEM) images of Acacia Mangium Wood derived Activated Carbons under different conditions. Image segmentation using Hue-Saturation-Value (HSV) thresholding method was adapted to identify the different pattern composition in the grayscale images by varying the intensity Value (V) and keeping Hue (H) and Saturation (S) to zero, and each pattern was considered as one type of element that constituted the Activated Carbon. The algorithm was developed to compute the percentage of each pattern using non-zero pixels, and on the basis of different patterns, different elements having certain percentage of composition were recorded. Later, these results were compared with the Energy Dispersive X-ray Spectroscopy (EDS) to cross check the difference in percentage of each element present at the surface of the Activated Carbon. Part of this result is published in the article [1], "Comparison of surface properties of wood biomass Activated Carbons and their application against rhodamine B and methylene blue dye" Surfaces and Interfaces vol. 11 (2018) pp1-13.•The methods involved will be useful for characterization of Activated Carbon materials.•Image segmentation using HSV thresholding will inspire other researchers to apply similar concept on other materials.•Different patterns obtained for FESEM images using HSV thresholding was able to determine the presence of multiple elements present in the prepared Activated Carbon samples.
  11. Ping CP, Tengku Mohamad TAS, Akhtar MN, Perimal EK, Akira A, Israf Ali DA, et al.
    Molecules, 2018 Sep 03;23(9).
    PMID: 30177603 DOI: 10.3390/molecules23092237
    Pain is one of the most common cause for hospital visits. It plays an important role in inflammation and serves as a warning sign to avoid further injury. Analgesics are used to manage pain and provide comfort to patients. However, prolonged usage of pain treatments like opioids and NSAIDs are accompanied with undesirable side effects. Therefore, research to identify novel compounds that produce analgesia with lesser side effects are necessary. The present study investigated the antinociceptive potentials of a natural compound, cardamonin, isolated from Boesenbergia rotunda (L) Mansf. using chemical and thermal models of nociception. Our findings showed that intraperitoneal and oral administration of cardamonin (0.3, 1, 3, and 10 mg/kg) produced significant and dose-dependent inhibition of pain in abdominal writhing responses induced by acetic acid. The present study also demonstrated that cardamonin produced significant analgesia in formalin-, capsaicin-, and glutamate-induced paw licking tests. In the thermal-induced nociception model, cardamonin exhibited significant increase in response latency time of animals subjected to hot-plate thermal stimuli. The rota-rod assessment confirmed that the antinociceptive activities elicited by cardamonin was not related to muscle relaxant or sedative effects of the compound. In conclusion, the present findings showed that cardamonin exerted significant peripheral and central antinociception through chemical- and thermal-induced nociception in mice through the involvement of TRPV₁, glutamate, and opioid receptors.
  12. Rizwan K, Rasool N, Rehman R, Mahmood T, Ayub K, Rasheed T, et al.
    Chem Cent J, 2018 Jul 17;12(1):84.
    PMID: 30019193 DOI: 10.1186/s13065-018-0451-0
    A variety of imine derivatives have been synthesized via Suzuki cross coupling of N-(4-bromophenyl)-1-(3-bromothiophen-2-yl)methanimine with various arylboronic acids in moderate to good yields (58-72%). A wide range of electron donating and withdrawing functional groups were well tolerated in reaction conditions. To explore the structural properties, Density functional theory (DFT) investigations on all synthesized molecules (3a-3i) were performed. Conceptual DFT reactivity descriptors and molecular electrostatic potential analyses were performed by using B3LYP/6-31G(d,p) method to explore the reactivity and reacting sites of all derivatives (3a-3i).
  13. Rizwan K, Zubair M, Rasool N, Mahmood T, Ayub K, Alitheen NB, et al.
    Chem Cent J, 2018 May 04;12(1):49.
    PMID: 29728881 DOI: 10.1186/s13065-018-0404-7
    Thiophene derivatives have shown versatile pharmacological activities. The Suzuki reaction proved a convenient method for C-C bond formations in organic molecules. In the present research work novel derivatives of 2,5-dibromo-3-methylthiophene (3a-k and 3l-p) has been synthesized, via Suzuki coupling reaction in low to moderate yields. A wide range of functional groups were well tolerated in reaction. Density functional theory investigations on all synthesized derivatives (3a-3p) were performed in order to explore the structural properties. The pharmaceutical potential of synthesized compounds was investigated through various bioassays (antioxidant, antibacterial, antiurease activities). The compounds 3l, 3g, 3j, showed excellent antioxidant activity (86.0, 82.0, 81.3%), respectively by scavenging DPPH. Synthesized compounds showed promising antibacterial activity against tested strains. 3b, 3k, 3a, 3d and 3j showed potential antiurease activity with 67.7, 64.2, 58.8, 54.7 and 52.1% inhibition at 50 µg/ml. Results indicated that synthesized molecules could be a potential source of pharmaceutical agents.
  14. Hussin Y, Aziz MNM, Che Rahim NF, Yeap SK, Mohamad NE, Masarudin MJ, et al.
    Int J Mol Sci, 2018 Apr 11;19(4).
    PMID: 29641445 DOI: 10.3390/ijms19041151
    Extensive research has been done in the search for innovative treatments against colon adenocarcinomas; however, the incidence rate of patients remains a major cause of cancer-related deaths in Malaysia. Natural bioactive compounds such as curcumin have been substantially studied as an alternative to anticancer drug therapies and have been surmised as a potent agent but, nevertheless, remain deficient due to its poor cellular uptake. Therefore, efforts now have shifted toward mimicking curcumin to synthesize novel compounds sharing similar effects. A synthetic analog, (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-ene-1-one (DK1), was recently synthesized and reported to confer improved bioavailability and selectivity toward human breast cancer cells. This study, therefore, aims to assess the anticancer mechanism of DK1 in relation to the induction of in vitro cell death in selected human colon cancer cell lines. Using the3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, the cytotoxicity of DK1 towards HT29 and SW620 cell lines were investigated. Acridine orange/propidium iodide (AO/PI) dual-staining assay and flow cytometry analyses (cell cycle analysis, Annexin/V-FITC and JC-1 assays) were incorporated to determine the mode of cell death. To further determine the mechanism of cell death, quantitative real-time polymerase chain reaction (qRT-PCR) and proteome profiling were conducted. Results from this study suggest that DK1 induced changes in cell morphology, leading to a decrease in cell viability and subsequent induction of apoptosis. DK1 treatment inhibited cell viability and proliferation 48 h post treatment with IC50 values of 7.5 ± 1.6 µM for HT29 cells and 14.5 ± 4.3 µM for SW620 cells, causing cell cycle arrest with increased accumulation of cell populations at the sub-G₀/G₁phaseof 74% and 23%, respectively. Flow cytometry analyses showed that DK1 treatment in cancer cells induced apoptosis, as indicated by DNA fragmentation and depolarization of the mitochondrial membrane. qRT-PCR results show significant upregulation in the expression of caspase-9 in both HT29 and SW620 cell lines, further supporting that cell death induction by DK1 is via an intrinsic pathway. These outcomes, therefore, demonstrate DK1 as a potential anticancer agent for colon adenocarcinoma due to its anti-apoptotic attributes.
  15. Zamrus SNH, Akhtar MN, Yeap SK, Quah CK, Loh WS, Alitheen NB, et al.
    Chem Cent J, 2018 Mar 19;12(1):31.
    PMID: 29556774 DOI: 10.1186/s13065-018-0398-1
    BACKGROUND: Curcumin is one of the leading compound extracted from the dry powder of Curcuma longa (Zingiberaceae family), which possess several pharmacological properties. However, in vivo administration exhibited limited applications in cancer therapies.

    RESULTS: Twenty-four curcumin derivatives have synthesized, which comprises cyclohexanone 1-10, acetone 11-17 and cyclopentanone 18-24 series. All the curcuminoids were synthesized by the acid or base catalyzed Claisen Schmidt condenstion reactions, in which β-diketone moiety of curcumin was modified with mono-ketone. These curcuminoids 1-24 were screened against HeLa, K562, MCF-7 (an estrogen-dependent) and MDA-MB-231 (an estrogen-independent) cancer cell lines. Among them, acetone series 11-17 were found to be more selective and potential cytotoxic agents. The compound 14 was exhibited (IC50 = 3.02 ± 1.20 and 1.52 ± 0.60 µg/mL) against MCF-7 and MDA-MB-231 breast cancer cell lines. Among the cyclohexanone series, the compound 4 exhibited (IC50 = 11.04 ± 2.80, 6.50 ± 01.80, 8.70 ± 3.10 and 2.30 ± 1.60 µg/mL) potential cytotoxicity against four proposed cancer cell lines, respectively. All the curcucminoids were characterized with the detailed1H NMR, IR, UV-Vis, and mass spectroscopic techniques. The structure of compound 4 was confirmed by using the single X-ray crystallography. Additionally, we are going to report the first time spectral data of (2E,6E)-2,6-bis(2-methoxybenzylidene)cyclohexanone (1). Structure-activity relationships revealed that the mono-carbonyl with 2,5-dimethoxy substituted curcuminoids could be an essential for the future drugs against cancer diseases.

    CONCLUSIONS: Curcuminoids with diferuloyl(4-hydroxy-3-methoxycinnamoyl) moiety with mono carbonyl exhibiting potential cytotoxic properties. The compound 14 was exhibited (IC50 = 3.02 ± 1.20 and 1.52 ± 0.60 µg/mL) against MCF-7 and MDA-MB-231 breast cancer cell lines.

  16. Abu Bakar A, Akhtar MN, Mohd Ali N, Yeap SK, Quah CK, Loh WS, et al.
    Molecules, 2018 Mar 08;23(3).
    PMID: 29518053 DOI: 10.3390/molecules23030616
    Flavokawain B (1) is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB), about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure-activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL), 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL) and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL) exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL) and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL) exhibited good cytotoxicity. The lead compound FKB (1) showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL) against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F) in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by ¹H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.
  17. Aziz MNM, Hussin Y, Che Rahim NF, Nordin N, Mohamad NE, Yeap SK, et al.
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303982 DOI: 10.3390/molecules23010075
    Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
  18. Danish M, Khanday WA, Hashim R, Sulaiman NS, Akhtar MN, Nizami M
    Ecotoxicol Environ Saf, 2017 May;139:280-290.
    PMID: 28167440 DOI: 10.1016/j.ecoenv.2017.02.001
    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb(')s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g.
  19. Ahmad G, Rasool N, Ikram HM, Gul Khan S, Mahmood T, Ayub K, et al.
    Molecules, 2017 Jan 27;22(2).
    PMID: 28134790 DOI: 10.3390/molecules22020190
    The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a-2i, 4a-4i. In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine (1) directly or via N-[5-bromo-2-methylpyridine-3-yl]acetamide (3) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a-2i and 4a-4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
  20. Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, et al.
    Eur J Pharmacol, 2017 Jan 05;794:127-134.
    PMID: 27845065 DOI: 10.1016/j.ejphar.2016.11.009
    Boesenbergia rotunda (L.) Mansf. had been traditionally used as herbs to treat pain and rheumatism. Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is a compound isolated from Boesenbergia rotunda (L.) Mansf.. Previous study had shown the potential of cardamonin in inhibiting the release of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. Thus, the possible therapeutic effect of cardamonin in the rheumatoid arthritis (RA) joints is postulated. This study was performed to investigate the anti-arthritic properties of cardamonin in rat model of induced RA, particularly on the inflammatory and pain response of RA. Rheumatoid arthritis paw inflammation was induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA) in Sprague Dawley rats. Using four doses of cardamonin (0.625, 1.25, 2.5, and 5.0mg/kg), anti-arthritic activity was evaluated through the paw edema, mechanical allodynia and thermal hyperalgesia responses. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the plasma level of TNF-α, IL-1β, and IL-6. Histological slides were prepared from the harvested rat paws to observe the arthritic changes in the joints. Behavioral, biochemical, and histological studies showed that cardamonin demonstrated significant inhibition on RA-induced inflammatory and pain responses as well as progression of joint destruction in rats. ELISA results showed that there was significant inhibition in TNF-α, IL-1β, and IL-6 levels in plasma of the cardamonin-treated RA rats. Overall, cardamonin possesses potential anti-arthritic properties in CFA-induced RA rat model.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links