Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Alhasa KM, Mohd Nadzir MS, Olalekan P, Latif MT, Yusup Y, Iqbal Faruque MR, et al.
    Sensors (Basel), 2018 Dec 11;18(12).
    PMID: 30544953 DOI: 10.3390/s18124380
    Conventional air quality monitoring systems, such as gas analysers, are commonly used in many developed and developing countries to monitor air quality. However, these techniques have high costs associated with both installation and maintenance. One possible solution to complement these techniques is the application of low-cost air quality sensors (LAQSs), which have the potential to give higher spatial and temporal data of gas pollutants with high precision and accuracy. In this paper, we present DiracSense, a custom-made LAQS that monitors the gas pollutants ozone (O₃), nitrogen dioxide (NO₂), and carbon monoxide (CO). The aim of this study is to investigate its performance based on laboratory calibration and field experiments. Several model calibrations were developed to improve the accuracy and performance of the LAQS. Laboratory calibrations were carried out to determine the zero offset and sensitivities of each sensor. The results showed that the sensor performed with a highly linear correlation with the reference instrument with a response-time range from 0.5 to 1.7 min. The performance of several calibration models including a calibrated simple equation and supervised learning algorithms (adaptive neuro-fuzzy inference system or ANFIS and the multilayer feed-forward perceptron or MLP) were compared. The field calibration focused on O₃ measurements due to the lack of a reference instrument for CO and NO₂. Combinations of inputs were evaluated during the development of the supervised learning algorithm. The validation results demonstrated that the ANFIS model with four inputs (WE OX, AE OX, T, and NO₂) had the lowest error in terms of statistical performance and the highest correlation coefficients with respect to the reference instrument (0.8 < r < 0.95). These results suggest that the ANFIS model is promising as a calibration tool since it has the capability to improve the accuracy and performance of the low-cost electrochemical sensor.
  2. Khandakar A, Chowdhury MEH, Ibne Reaz MB, Md Ali SH, Hasan MA, Kiranyaz S, et al.
    Comput Biol Med, 2021 10;137:104838.
    PMID: 34534794 DOI: 10.1016/j.compbiomed.2021.104838
    Diabetes foot ulceration (DFU) and amputation are a cause of significant morbidity. The prevention of DFU may be achieved by the identification of patients at risk of DFU and the institution of preventative measures through education and offloading. Several studies have reported that thermogram images may help to detect an increase in plantar temperature prior to DFU. However, the distribution of plantar temperature may be heterogeneous, making it difficult to quantify and utilize to predict outcomes. We have compared a machine learning-based scoring technique with feature selection and optimization techniques and learning classifiers to several state-of-the-art Convolutional Neural Networks (CNNs) on foot thermogram images and propose a robust solution to identify the diabetic foot. A comparatively shallow CNN model, MobilenetV2 achieved an F1 score of ∼95% for a two-feet thermogram image-based classification and the AdaBoost Classifier used 10 features and achieved an F1 score of 97%. A comparison of the inference time for the best-performing networks confirmed that the proposed algorithm can be deployed as a smartphone application to allow the user to monitor the progression of the DFU in a home setting.
  3. Haque F, Ibne Reaz MB, Chowdhury MEH, Md Ali SH, Ashrif A Bakar A, Rahman T, et al.
    Comput Biol Med, 2021 12;139:104954.
    PMID: 34715551 DOI: 10.1016/j.compbiomed.2021.104954
    BACKGROUND: Diabetic Sensorimotor polyneuropathy (DSPN) is one of the major indelible complications in diabetic patients. Michigan neuropathy screening instrumentation (MNSI) is one of the most common screening techniques used for DSPN, however, it does not provide any direct severity grading system.

    METHOD: For designing and modeling the DSPN severity grading systems for MNSI, 19 years of data from Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials were used. Different Machine learning-based feature ranking techniques were investigated to identify the important MNSI features associated with DSPN diagnosis. A multivariable logistic regression-based nomogram was generated and validated for DSPN severity grading using the best performing top-ranked MNSI features.

    RESULTS: Top-10 ranked features from MNSI features: Appearance of Feet (R), Ankle Reflexes (R), Vibration perception (L), Vibration perception (R), Appearance of Feet (L), 10-gm filament (L), Ankle Reflexes (L), 10-gm filament (R), Bed Cover Touch, and Ulceration (R) were identified as important features for identifying DSPN by Multi-Tree Extreme Gradient Boost model. The nomogram-based prediction model exhibited an accuracy of 97.95% and 98.84% for the EDIC test set and an independent test set, respectively. A DSPN severity score technique was generated for MNSI from the DSPN severity prediction model. DSPN patients were stratified into four severity levels: absent, mild, moderate, and severe using the cut-off values of 17.6, 19.1, 20.5 for the DSPN probability less than 50%, 75%-90%, and above 90%, respectively.

    CONCLUSIONS: The findings of this work provide a machine learning-based MNSI severity grading system which has the potential to be used as a secondary decision support system by health professionals in clinical applications and large clinical trials to identify high-risk DSPN patients.

  4. Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, et al.
    Biomed Res Int, 2014;2014:651831.
    PMID: 24900976 DOI: 10.1155/2014/651831
    Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.
  5. Dorniani D, Kura AU, Hussein-Al-Ali SH, bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:972501.
    PMID: 24895684 DOI: 10.1155/2014/972501
    The coating of an active drug, 6-mercaptopurine, into the iron oxide nanoparticles-polyethylene glycol (FNPs-PEG) in order to form a new nanocomposite, FPEGMP-2, was accomplished using coprecipitation technique. The resulting nanosized with a narrow size distribution magnetic polymeric particles show the superparamagnetic properties with 38.6 emu/g saturation magnetization at room temperature. Fourier transform infrared spectroscopy and the thermal analysis study supported the formation of the nanocomposite and the enhancement of thermal stability in the resulting nanocomposite comparing with its counterpart in free state. The loading of 6-mercaptopurine (MP) in the FPEGMP-2 nanocomposite was estimated to be about 5.6% and the kinetic experimental data properly correlated with the pseudo-second order model. Also, the release of MP from the FPEGMP-2 nanocomposite shows the sustained release manner which is remarkably lower in phosphate buffered solution at pH 7.4 than pH 4.8, due to different release mechanism. The maximum percentage release of MP from the nanocomposite reached about 60% and 97% within about 92 and 74 hours when exposed to pH 7.4 and 4.8, respectively.
  6. Dorniani D, Kura AU, Hussein-Al-Ali SH, Bin Hussein MZ, Fakurazi S, Shaari AH, et al.
    ScientificWorldJournal, 2014;2014:416354.
    PMID: 24737969 DOI: 10.1155/2014/416354
    The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.
  7. Saddki N, Sulaiman Z, Ali SH, Tengku Hassan TN, Abdullah S, Ab Rahman A, et al.
    J Interpers Violence, 2013 Aug;28(12):2557-80.
    PMID: 23508088 DOI: 10.1177/0886260513479029
    The Women's Health and Life Experiences questionnaire measures the prevalence, health implications, and risk factors for domestic violence. This cross-sectional study was conducted to determine the validity and reliability of the Malay version of World Health Organization (WHO) Women's Health and Life Experiences Questionnaire. Construct validity and reliability assessment of the Malay version of the questionnaire was done on 20 specific items that measure four types of intimate partner violence (IPV) act; controlling behaviors (CB), emotional violence (EV), physical violence (PV), and sexual violence (SV), which were considered as the domains of interest. Face-to-face interviewing method was used for data collection. A total of 922 women completed the interviews. The results showed that exploratory factor analysis of four factors with eigenvalues above 1 accounted for 63.83% of the variance. Exploratory factor analysis revealed that all items loaded above 0.40 and the majority of items loaded on factors that were generally consistent with the proposed construct. The internal consistency reliability was good. The Cronbach's α values ranged from 0.767 to 0.858 across domains. The Malay version of WHO Women's Health and Life Experiences Questionnaire is a valid and reliable measure of women's health and experiences of IPV in Malaysia.
  8. Rahman AA, Rahman RA, Ismail SB, Ibrahim MI, Ali SH, Salleh H, et al.
    Asia Pac J Public Health, 2015 Mar;27(2):NP1549-56.
    PMID: 22751680 DOI: 10.1177/1010539512449856
    The objective of this cross-sectional study was to determine the factors associated with the attitudes toward premarital sexual activities among school-going adolescents in Kelantan, Malaysia. It was conducted among 1032 secondary school students using a self-administered validated questionnaire. Multiple logistic regression revealed that the risk factors for having permissive attitudes toward practice of premarital sexual activities were male students (odds ratio [OR] = 1.83; 95% confidence interval [CI] = 1.34-2.48), being less religious (OR = 2.02; 95% CI = 1.49-2.73), and younger age group of students (13 to 14 years old; OR = 1.42; 95% CI = 1.05-1.92). Having good knowledge on sexual and reproductive health was a protective factor against permissive sexual attitude (OR = 0.27; 95% CI = 0.20-0.36). In conclusion, male and young adolescents were at risk of having permissive attitudes toward sexual behaviors, but good knowledge on sexual and reproductive health and being more religious may protect them from it.
  9. Ab Rahman A, Ab Rahman R, Ibrahim MI, Salleh H, Ismail SB, Ali SH, et al.
    PMID: 21706952
    The objectives of this study were to describe the knowledge of sexual and reproductive health among adolescents attending school and to compare the levels of knowledge between males and females and between older and younger groups of adolescents. A cross-sectional study was conducted among 1,034 secondary school students using a self administered validated questionnaire. The items with the fewest correct responses included: whether one can get pregnant after a single act of sexual intercourse (30.4%), whether sexual intercourse causes sexually transmitted diseases (STDs) (12.4%) and whether washing the vagina after sexual intercourse prevents pregnancy (17.0%). Their main source of sexual information was friends (64.4%). An independent t-test revealed the mean knowledge score was significantly higher among females than males on items assessing whether the genitalia may be touched freely by family members, females having attained menarche may become pregnant if having sex, whether pregnancy will occur if there is penetration of the penis into the vagina, whether premarital sexual intercourse causes pregnancy and if there is a relationship between abandoned babies and premarital pregnancies. The mean knowledge score assessing whether pregnancy can be prevented using condoms was higher among males than females. The mean knowledge scores were significantly higher among form four and form five students than forms one, two and three students. Lack of knowledge regarding important aspects of sexual and reproductive health warrant the need to strengthen sexual and reproductive health education.
  10. Al-Qazzaz NK, Bin Mohd Ali SH, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2015;15(11):29015-35.
    PMID: 26593918 DOI: 10.3390/s151129015
    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
  11. Mohd Nasarruddin A, Wan Mohammad WM, Nik Hussain NH, Ali SH, Zubir HM
    AIDS Care, 2015;27(3):301-6.
    PMID: 25471247 DOI: 10.1080/09540121.2014.985182
    Kelantan, a northeastern state in Peninsular Malaysia, is one of the states that has been acutely hit by injecting drug user (IDU)-driven HIV epidemic, in addition to having a high number of infected women in Malaysia. This cross-sectional study describes the socio-demographic characteristics, HIV risk factors, risk perception, and adoption of preventive behaviors among female partners of IDUs in Kelantan. Out of 101 women, the majority of them are from low socioeconomic background and have no other risk factors besides heterosexual HIV transmission from their male IDU partners. Although 45.5% have not been tested for HIV and more than half (53.5%) of them did not use condoms during sexual intercourse, only 44.6% of the women perceived themselves to be at risk of being infected with HIV. Most of the women (86.1%) were willing to undergo voluntary counseling and testing (VCT). Female partners of IDUs continue to be vulnerable to HIV due to having sexual contact with IDUs, and also due to their socioeconomic position in the community. To prevent HIV transmission among female partners of IDUs, consolidating HIV prevention efforts from multiple approaches is needed.
  12. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster TJ
    Int J Nanomedicine, 2014;9:3801-14.
    PMID: 25143729 DOI: 10.2147/IJN.S61143
    Because of their magnetic properties, magnetic nanoparticles (MNPs) have numerous diverse biomedical applications. In addition, because of their ability to penetrate bacteria and biofilms, nanoantimicrobial agents have become increasingly popular for the control of infectious diseases. Here, MNPs were prepared through an iron salt coprecipitation method in an alkaline medium, followed by a chitosan coating step (CS-coated MNPs); finally, the MNPs were loaded with ampicillin (amp) to form an amp-CS-MNP nanocomposite. Both the MNPs and amp-CS-MNPs were subsequently characterized and evaluated for their antibacterial activity. X-ray diffraction results showed that the MNPs and nanocomposites were composed of pure magnetite. Fourier transform infrared spectra and thermogravimetric data for the MNPs, CS-coated MNPs, and amp-CS-MNP nanocomposite were compared, which confirmed the CS coating on the MNPs and the amp-loaded nanocomposite. Magnetization curves showed that both the MNPs and the amp-CS-MNP nanocomposites were superparamagnetic, with saturation magnetizations at 80.1 and 26.6 emu g(-1), respectively. Amp was loaded at 8.3%. Drug release was also studied, and the total release equilibrium for amp from the amp-CS-MNPs was 100% over 400 minutes. In addition, the antimicrobial activity of the amp-CS-MNP nanocomposite was determined using agar diffusion and growth inhibition assays against Gram-positive bacteria and Gram-negative bacteria, as well as Candida albicans. The minimum inhibitory concentration of the amp-CS-MNP nanocomposite was determined against bacteria including Mycobacterium tuberculosis. The synthesized nanocomposites exhibited antibacterial and antifungal properties, as well as antimycobacterial effects. Thus, this study introduces a novel β-lactam antibacterial-based nanocomposite that can decrease fungus activity on demand for numerous medical applications.
  13. Al-Qazzaz NK, Ali SH, Ahmad SA, Chellappan K, Islam MS, Escudero J
    ScientificWorldJournal, 2014;2014:906038.
    PMID: 25093211 DOI: 10.1155/2014/906038
    The early detection and classification of dementia are important clinical support tasks for medical practitioners in customizing patient treatment programs to better manage the development and progression of these diseases. Efforts are being made to diagnose these neurodegenerative disorders in the early stages. Indeed, early diagnosis helps patients to obtain the maximum treatment benefit before significant mental decline occurs. The use of electroencephalogram as a tool for the detection of changes in brain activities and clinical diagnosis is becoming increasingly popular for its capabilities in quantifying changes in brain degeneration in dementia. This paper reviews the role of electroencephalogram as a biomarker based on signal processing to detect dementia in early stages and classify its severity. The review starts with a discussion of dementia types and cognitive spectrum followed by the presentation of the effective preprocessing denoising to eliminate possible artifacts. It continues with a description of feature extraction by using linear and nonlinear techniques, and it ends with a brief explanation of vast variety of separation techniques to classify EEG signals. This paper also provides an idea from the most popular studies that may help in diagnosing dementia in early stages and classifying through electroencephalogram signal processing and analysis.
  14. Al-Qazzaz NK, Ali SH, Ahmad SA, Islam S, Mohamad K
    Neuropsychiatr Dis Treat, 2014;10:1677-91.
    PMID: 25228808 DOI: 10.2147/NDT.S67184
    Cognitive impairment and memory dysfunction following stroke diagnosis are common symptoms that significantly affect the survivors' quality of life. Stroke patients have a high potential to develop dementia within the first year of stroke onset. Currently, efforts are being exerted to assess stroke effects on the brain, particularly in the early stages. Numerous neuropsychological assessments are being used to evaluate and differentiate cognitive impairment and dementia following stroke. This article focuses on the role of available neuropsychological assessments in detection of dementia and memory loss after stroke. This review starts with stroke types and risk factors associated with dementia development, followed by a brief description of stroke diagnosis criteria and the effects of stroke on the brain that lead to cognitive impairment and end with memory loss. This review aims to combine available neuropsychological assessments to develop a post-stroke memory assessment (PSMA) scheme based on the most recognized and available studies. The proposed PSMA is expected to assess different types of memory functionalities that are related to different parts of the brain according to stroke location. An optimal therapeutic program that would help stroke patients enjoy additional years with higher quality of life is presented.
  15. Larki F, Dehzangi A, Md Ali SH, Jalar A, Islam MS, Hamidon MN, et al.
    PLoS One, 2014;9(4):e95182.
    PMID: 24743692 DOI: 10.1371/journal.pone.0095182
    This paper examines the impact of two important geometrical parameters, namely the thickness and source/drain extensions on the performance of low doped p-type double lateral gate junctionless transistors (DGJLTs). The three dimensional Technology Computer-Aided Design simulation is implemented to calculate the characteristics of the devices with different thickness and source/drain extension and based on that, the parameters such as threshold voltage, transconductance and resistance in saturation region are analyzed. In addition, simulation results provide a physical explanation for the variation of device characteristics given by the variation of geometric parameters, mainly based on investigation of the electric field components and the carries density variation. It is shown that, the variation of the carrier density is the main factor which affects the characteristics of the device when the device's thickness is varied. However, the electric field is mainly responsible for variation of the characteristics when the source/drain extension is changed.
  16. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
  17. Saifullah B, Hussein MZ, Hussein-Al-Ali SH, Arulselvan P, Fakurazi S
    Drug Des Devel Ther, 2013;7:1365-75.
    PMID: 24255593 DOI: 10.2147/DDDT.S50665
    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.
  18. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Ismail M, Dorniani D, Webster TJ
    Int J Nanomedicine, 2014;9:351-62.
    PMID: 24453486 DOI: 10.2147/IJN.S53847
    Iron oxide magnetic nanoparticles (MNPs) were synthesized by the coprecipitation of iron salts in sodium hydroxide followed by coating separately with chitosan (CS) and polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs nanoparticles, respectively. They were then loaded with kojic acid (KA), a pharmacologically bioactive natural compound, to form KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The MNPs and their nanocomposites were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. The powder X-ray diffraction data suggest that all formulations consisted of highly crystalline, pure magnetite Fe3O4. The Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed the presence of both polymers and KA in the nanocomposites. Magnetization curves showed that both nanocomposites (KA-CS-MNPs and KA-PEG-MNPs) were superparamagnetic with saturation magnetizations of 8.1 emu/g and 26.4 emu/g, respectively. The KA drug loading was estimated using ultraviolet-visible spectroscopy, which gave a loading of 12.2% and 8.3% for the KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The release profile of the KA from the nanocomposites followed a pseudo second-order kinetic model. The agar diffusion test was performed to evaluate the antimicrobial activity for both KA-CS-MNPs and KA-PEG-MNPs nanocomposites against a number of microorganisms using two Gram-positive (methicillin-resistant Staphylococcus aureus and Bacillus subtilis) and one Gram-negative (Salmonella enterica) species, and showed some antibacterial activity, which could be enhanced in future studies by optimizing drug loading. This study provided evidence for the promise for the further investigation of the possible beneficial biological activities of KA and both KA-CS-MNPs and KA-PEG-MNPs nanocomposites in nanopharmaceutical applications.
  19. Hussein-Al-Ali SH, Arulselvan P, Fakurazi S, Hussein MZ, Dorniani D
    J Biomater Appl, 2014 Jan 19;29(2):186-198.
    PMID: 24445774
    Iron oxide magnetic nanoparticles (MNPs) can be used in targeted drug delivery systems for localized cancer treatment. MNPs coated with biocompatible polymers are useful for delivering anticancer drugs. Iron oxide MNPs were synthesized via co-precipitation method then coated with either chitosan (CS) or polyethylene glycol (PEG) to form CS-MNPs and PEG-MNPs, respectively. Arginine (Arg) was loaded onto both coated nanoparticles to form Arg-CS-MNP and Arg-PEG-MNP nanocomposites. The X-ray diffraction results for the MNPs and the Arg-CS-MNP and Arg-PEG-MNPs nanocomposites indicated that the iron oxide contained pure magnetite. The amount of CS and PEG bound to the MNPs were estimated via thermogravimetric analysis and confirmed via Fourier transform infrared spectroscopy analysis. Arg loading was estimated using UV-vis measurements, which yielded values of 5.5% and 11% for the Arg-CS-MNP and Arg-PEG-MNP nanocomposites, respectively. The release profile of Arg from the nanocomposites followed a pseudo-second-order kinetic model. The cytotoxic effects of the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs were evaluated in human cervical carcinoma cells (HeLa), mouse embryonic fibroblast cells (3T3) and breast adenocarcinoma cells (MCF-7). The results indicate that the MNPs, Arg-CS-MNPs, and Arg-PEG-MNPs do not exhibit cytotoxicity toward 3T3 and HeLa cells. However, treatment of the MCF-7 cells with the Arg-CS-MNP and Arg-PEG-MNP nanocomposites reduced the cancer cell viability with IC50 values of 48.6 and 42.6 µg/mL, respectively, whereas the MNPs and free Arg did not affect the viability of the MCF-7 cells.
  20. Kura AU, Hussein Al Ali SH, Hussein MZ, Fakurazi S, Arulselvan P
    Int J Nanomedicine, 2013;8:1103-10.
    PMID: 23524513 DOI: 10.2147/IJN.S39740
    A new layered organic-inorganic nanocomposite material with an anti-parkinsonian active compound, L-3-(3,4-dihydroxyphenyl) alanine (levodopa), intercalated into the inorganic interlayers of a Zn/Al-layered double hydroxide (LDH) was synthesized using a direct coprecipitation method. The resulting nanocomposite was composed of the organic moiety, levodopa, sandwiched between Zn/Al-LDH inorganic interlayers. The basal spacing of the resulting nano-composite was 10.9 Å. The estimated loading of levodopa in the nanocomposite was approximately 16% (w/w). A Fourier transform infrared study showed that the absorption bands of the nanocomposite were characteristic of both levodopa and Zn/Al-LDH, which further confirmed intercalation, and that the intercalated organic moiety in the nanocomposite was more thermally stable than free levodopa. The resulting nanocomposite showed sustained-release properties, so can be used in a controlled-release formulation. Cytotoxicity analysis using an MTT assay also showed increased cell viability of 3T3 cells exposed to the newly synthesized nanocomposite compared with those exposed to pure levodopa after 72 hours of exposure.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links