Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Adha PR, Chua KH, Mazlyzam AL, Low KC, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:30-1.
    PMID: 19024968
    A major factor limiting survival following extensive thermal injury is insufficient availability of donor sites to provide enough skin for the required grafting procedures. Limitation of autologous grafting promotes the usage of allograft skin substitutes to promote wound healing. Here, we investigated the wound healing potential of allograft single layered tissue engineered skin which comprises of either keratinocytes (SLTES-K) or fibroblast (SLTES-F) with fibrin as the delivery system. Results from gross and microscopic evaluation showed our single layered tissue engineered skin constructed with keratinocytes or fibroblast after gamma radiation with the dosage of 2Gy could serve as allograft for the treatment of skin loss.
  2. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
  3. Alfaqeh H, Chua KH, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:119-20.
    PMID: 19025014
    This study aimed to compare the effects of three different media on the in vivo chondrogenesis of sheep bone marrow stem cells (BMSC). Sheep BMSC were cultured in F12:DMEM + 10% FBS, chondrogenic medium containing 5ng/ml TGF,3 + 50ng/ml IGF-1 and UKM-MECC for three weeks. The cultured cells were then harvested for construct formation with fibrin. Constructed tissues were implanted subcutaneously into nude mice for in vivo development. Cell aggregates were formed in both chondrogenic medium and UKM-MECC demonstrated the early chondrogenesis process. After five weeks of in vivo development, both chondrogenic medium and UKM-MECC promoted cartilage matrix synthesis confirmed by Safranin O staining.
  4. Alfaqeh H, Norhamdan MY, Chua KH, Chen HC, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:37-8.
    PMID: 19024972
    This study was to determine if autologous bone marrow mesenchymal stem cells (BMSCs) cultured in chondrogenic medium could repair surgically induced osteoarthritis. Sheep BMSCs were cultured in medium containing 5ng/ml TGFbeta3 + 50ng/ml IGF-1 for three weeks. The cultured cells were then suspended at density of 2x10(6) cell/ml and injected intraarticularly into the osteoarthritic knee joint. After six weeks, the distal head of the femur and the proximal tibial plateau were removed and stained with H&E. The results indicated that knee joints treated with autologous BMSCs cultured in chondrogenic medium showed clear evidence of articular cartilage regeneration in comparison with other groups.
  5. Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:47-8.
    PMID: 19024977
    The emergence of tissue engineering and stem cell research has created a tremendous response amongst scientist in Malaysia. However, despite the enthusiastic to embark on the research we have to carefully divert the research towards our needs. This is due to our responsibility to address the mounting problem of communicable diseases here and a very limited funding. As commercialization is a key objective the combination of products towards treating or diagnosing communicable and non-communicable diseases in the developing country is another important factor. The discussion here is mainly on the evolution of tissue engineering in Malaysia and taking a model of tissue engineering in otolaryngology.
  6. Aminuddin BS
    Med J Malaysia, 2004 May;59 Suppl B:3-4.
    PMID: 15468790
    Management of severe tracheal anomalies remains a clinical challenge. Tissue engineering offers new hope in trachea reconstruction surgery. However to date no optimal technique achieved in the formation of human or animal trachea. The main problem lies on the biomaterial used and the complex city of forming trachea in vivo. This study was aimed at creating tissue-engineered trachea cartilage from easily accessible human and animal nasal septum cartilage using internal scaffold and biodegradable human and animal fibrin.
  7. Azmi B, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Chua KH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:13-4.
    PMID: 15468795
    Animal serum is commonly used in chondrocytes culture expansion to promote cell proliferation and shorten the time lag before new tissue reconstruction is possible. However, animal serum is not suitable for regeneration of clinical tissue because it has potential risk of viral and prion related disease transmission particularly mad cow disease and foreign protein contamination that can stimulate immune reaction leading to graft rejection. In this context, human serum as homologous supplement has a greater potential as growth promoting agents for human chondrocytes culture.
  8. Badrul AH, Aminuddin BS, Sharaf I, Samsudin OC, Munirah S, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:11-2.
    PMID: 15468794
    Culture media supplemented with animal serum e.g. fetal bovine serum; FBS is commonly used for human culture expansion. However, for clinical application, FBS is restricted as its carry a risk of viral or prion transmission. Engineering autologous cartilage with autologous human serum supplementation is seen as a better solution to reduce the risk of transmitting infectious diseases and immune rejection during cartilage transplantation. The purpose of this study is to establish and compare the effects of 10% autologous human serum (AHS) and 10% FBS on the growth of chondrocytes and the formation of tissue engineered human articular cartilage.
  9. Chowdhury SR, Ng MH, Hassan NS, Aminuddin BS, Ruszymah BH
    Hum. Cell, 2012 Sep;25(3):69-77.
    PMID: 22968953
    This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
  10. Chowdhury SR, Aminuddin BS, Ruszymah BH
    Indian J Exp Biol, 2012 May;50(5):332-9.
    PMID: 22803323
    In the present study in vitro expansion of human keratinocytes by supplementing dermal fibroblasts conditioned medium (DFCM) has been reported. Effect of two different DFCM acquired by culturing fibroblasts in keratinocyte-specific medium (defined keratinocytes serum free medium, DFCM-DKSFM) and fibroblast-specific serum free medium (F12: DMEM nutrient mix, DFCM-FD) have been compared. Growth kinetics of keratinocytes in terms of efficiency of cell attachment, expansion index, apparent specific growth rate and growth potential at the end of culture was evaluated in culture supplemented with DFCM-DKSFM and DFCM-FD in comparison with control i.e. DKSFM only. Results indicated that supplementation of DFCM caused significant increase in keratinocyte attachment. Efficiency of keratinocyte attachment in culture supplemented with bFCM-DKSFM was significantly higher compared to those cultured in DFCM-FD and DKSFM. In addition, the expansion index of keratinocytes in cultures supplemented with DFCM-DKSFM and DFCM-FD were 3.7 and 2.2 times higher than that of control condition even though the apparent growth rate and proliferative potential was found significantly lower. These results suggested that supplementation of DFCM enhanced expansion of keratinocyte by increasing efficiency of cell attachment, and DFCM-DKSFM provided suitable condition for in vitro expansion of keratinocytes compared to DFCM-FD and control condition.
  11. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
  12. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:7-8.
    PMID: 15468792
    The regulation roles of insulin-like growth factor-1 (IGF-1) with basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFbeta2) in human nasal septum chondrocytes monolayer culture and cartilage engineering was investigated in this study. The role of IGF-1 with bFGF and TGFbeta2 was investigated by measuring chondrocyte growth kinetic and collagen genes expression. IGF-1 together with bFGF and TGFbeta2 promote cartilage tissue engineering, increase type II collagen expression and enhance the histological features of engineered cartilage.
  13. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Eur Cell Mater, 2005 Jun 17;9:58-67; discussion 67.
    PMID: 15962238
    This study was to investigate the effects of insulin-transferrin-selenium (ITS) on the proliferation and quantitative gene expression of adult human nasal septum chondrocytes in monolayer culture expansion and the formation of tissue engineered hyaline cartilage. Effects of ITS on human nasal septum chondrocytes monolayer culture expansion and gene expression were evaluated in various culture media either added with 2% fetal bovine serum (FBS) or 1 ng/mL basic fibroblast growth factor plus 1 ng/mL transforming growth factor or both serum and growth factors supplementation in comparison with medium added with 10%FBS. Chondrocytes cultured in medium added with 2% fetal bovine serum and growth factors either supplemented with or without ITS were then mixed with pluronic F-127 hydrogel for in vivo tissue engineered cartilage formation in nude mice model. Engineered tissues were removed after 8 weeks of implantation and evaluated with histological staining, immunohistochemistry, transmission electron microscopy and quantitative gene expression analysis. ITS promoted human chondrocytes proliferation and reduced chondrocytes dedifferentiation in media supplemented with serum and growth factors. ITS with 2% FBS and growth factors provided 15-fold increased in chondrocytes number by the end of the culture period compared to the standard culture medium used in chondrocytes culture (medium added with 10% FBS). Engineered tissue resulted from ITS supplementation demonstrated higher quality of cartilage formation. In conclusion, our study has demonstrated the benefits of ITS supplementation in human chondrocytes monolayer culture and tissue engineering cartilage formation.
  14. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Singapore Med J, 2007 Apr;48(4):324-32.
    PMID: 17384880
    The objectives of this study were to determine the optimum concentration of basic fibroblast growth factor (bFGF) in foetal bovine serum (FBS) or human serum (HS) supplemented medium for adult human nasal septum chondrocyte culture and to evaluate the potential of cartilage regeneration.
  15. Farah WI, Aminuddin BS, Ruszymah BH
    Malays J Pathol, 2006 Jun;28(1):23-33.
    PMID: 17694956 MyJurnal
    Hearing loss is a common sensory deficit in humans. The hearing loss may be conductive, sensorineural, or mixed, syndromic or nonsyndromic, prelingual or postlingual. Due to the complexity of the hearing mechanism, it is not surprising that several hundred genes might be involved in causing hereditary hearing loss. There are at least 82 chromosomal loci that have been identified so far which are associated with the most common type of deafness--non-syndromic deafness. However, there are still many more which remained to be discovered. Here, we report the mapping of a locus for autosomal recessive, non-syndromic deafness in a family in Malaysia. The investigated family (AC) consists of three generations--parents who are deceased, nine affected and seven unaffected children and grandchildren. The deafness was deduced to be inherited in an autosomal recessive manner with 70% penetrance. Recombination frequencies were assumed to be equal for both males and females. Using two-point lod score analysis (MLINK), a maximum lod score of 2.48 at 0% recombinant (Z = 2.48, theta = 0%) was obtained for the interval D14S63-D14S74. The haplotype analysis defined a 14.38 centiMorgan critical region around marker D14S258 on chromosome 14q23.2-q24.3. There are 16 candidate genes identified with positive expression in human cochlear and each has great potential of being the deaf gene responsible in causing non-syndromic hereditary hearing loss in this particular family. Hopefully, by understanding the role of genetics in deafness, early interventional strategies can be undertaken to improve the life of the deaf community.
  16. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
  17. Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:163-171.
    PMID: 27524008 DOI: 10.1016/j.msec.2016.05.109
    Collagen is the most abundant extracellular matrix (ECM) protein in the human body, thus widely used in tissue engineering and subsequent clinical applications. This study aimed to extract collagen from ovine (Ovis aries) Achilles tendon (OTC), and to evaluate its physicochemical properties and its potential to fabricate thin film with collagen fibrils in a random or aligned orientation. Acid-solubilized protein was extracted from ovine Achilles tendon using 0.35M acetic acid, and 80% of extracted protein was measured as collagen. SDS-PAGE and mass spectrometry analysis revealed the presence of alpha 1 and alpha 2 chain of collagen type I (col I). Further analysis with Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirms the presence of triple helix structure of col I, similar to commercially available rat tail col I. Drying the OTC solution at 37°C resulted in formation of a thin film with randomly orientated collagen fibrils (random collagen film; RCF). Introduction of unidirectional mechanical intervention using a platform rocker prior to drying facilitated the fabrication of a film with aligned orientation of collagen fibril (aligned collagen film; ACF). It was shown that both RCF and ACF significantly enhanced human dermal fibroblast (HDF) attachment and proliferation than that on plastic surface. Moreover, cells were distributed randomly on RCF, but aligned with the direction of mechanical intervention on ACF. In conclusion, ovine tendon could be an alternative source of col I to fabricate scaffold for tissue engineering applications.
  18. Hamid AA, Ruszymah BH, Aminuddin BS, Sathappan S, Chua KH
    Med J Malaysia, 2008 Jul;63 Suppl A:9-10.
    PMID: 19024959
    Human adipose-derived stem cells (HADSC) have demonstrated the capacity of differentiating into bone depending on the specific induction stimuli and growth factors. However, investigation on stem cell characteristic after osteogenic differentiation is still lacking. The goal of this study was to investigate the differential expression of sternness and osteogenic genes in non-induced HADSC compared with HADSC after osteogenic induction using quantitative Real Time RT-PCR. Our results showed that OCT-4, REX-1, FZD9, OSC, RUNX, and ALP were up regulated after osteogenic induction. This may indicated that HADSCs after osteogenic induction still possessed some stemness properties.
  19. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
  20. Ibnubaidah MA, Chua KH, Mazita A, Azida ZN, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:115-6.
    PMID: 19025012
    A potential cure for hearing loss would be to regenerate hair cells by stimulating cells of the damaged inner ear sensory epithelia to proliferate and differentiate into hair cells. Here, we investigated the possibility to isolate, culture-expand and characterize the cells from the cochlea membrane of adult mice. Our results showed that the cultured cells isolated from mouse cochlea membrane were heterogenous in nature. Morphologically there were epithelial like cells, hair cell like, nerve cell like and fibroblastic cells observed in the culture. The cultured cells were immunopositive for specific hair cell markers including Myosin 7a, Calretinin and Espin.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links