Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Aziz NA, Huong KH, Sipaut CS, Amirul AA
    Bioprocess Biosyst Eng, 2017 Nov;40(11):1643-1656.
    PMID: 28762009 DOI: 10.1007/s00449-017-1820-0
    This study reports an efficient fed-batch strategy to improve poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolymer production by Cupriavidus sp. USMAA2-4 with enhanced mechanical properties in bioreactor. The cultivations have been performed by combining oleic acid with γ-butyrolactone at different concentration ratios with 1-pentanol at a fixed concentration. The batch and fed-batch fermentations have resulted in P(3HB-co-3HV-co-4HB) with compositions of 9-35 mol% 3HV and 4-24 mol% 4HB monomers. The DO-stat fed-batch fermentation strategies have significantly improved the production with a maximum 4.4-fold increment of cell dry weight (CDW). Besides, appropriate feeding of the substrates has resulted in an increment of terpolymer productivity from 0.086-0.347 g/L/h, with a significantly shortened cultivation time. The bacterial growth and terpolymer formation have been found to be affected by the concentration of carbon sources supplied. Characterization of P(3HB-co-3HV-co-4HB) has demonstrated that incorporation of 3HV and 4HB monomer has significantly improved the physical and thermodynamic properties of the polymers, by reducing the polymer's crystallinity. The tensile strength, Young's modulus of the terpolymer has been discovered to increase with the increase of M w. The fed-batch fermentation strategies employed in this study have resulted in terpolymers with a range of flexible materials having improved tensile strength and Young's modulus as compared to the terpolymer produced from batch fermentation. Possession of lower melting temperature indicates an enhanced thermal stability which broadens the polymer processing window.
  2. Furusawa G, Lau NS, Suganthi A, Amirul AA
    Microbiologyopen, 2017 02;6(1).
    PMID: 27987272 DOI: 10.1002/mbo3.405
    The agarolytic bacterium Persicobacter sp. CCB-QB2 was isolated from seaweed (genus Ulva) collected from a coastal area of Malaysia. Here, we report a high-quality draft genome sequence for QB2. The Rapid Annotation using Subsystem Technology (RAST) annotation server identified four β-agarases (PdAgaA, PdAgaB, PdAgaC, and PdAgaD) as well as galK, galE, and phosphoglucomutase, which are related to the Leloir pathway. Interestingly, QB2 exhibited a diauxic growth in the presence of two kinds of nutrients, such as tryptone and agar. In cells grown with agar, the profiles of agarase activity and growth rate were very similar. galK, galE, and phosphoglucomutase genes were highly expressed in the second growth phase of diauxic growth, indicating that QB2 cells use galactose hydrolyzed from agar by its agarases and exhibit nutrient prioritization. This is the first report describing diauxic growth for agarolytic bacteria. QB2 is a potential novel model organism for studying diauxic growth in environmental bacteria.
  3. Maryam S, Fadzly N, Amirul AA, Zuharah WF
    Rev Inst Med Trop Sao Paulo, 2017 Apr 03;59:e4.
    PMID: 28380115 DOI: 10.1590/S1678-9946201759004
    Paederus fuscipes, a vector of Paederus dermatitis in most tropical and subtropical countries of the world have a high prevalence in human dwellings due to their positively phototaxic behaviour which has caused a tremendous impact on human health. In this paper, P. fuscipes dispersal flights were studied for two seasons of the rice cultivation phases in residential premises built close to rice field areas (≈32-60 m and 164 m) in mainland Penang, Malaysia. We examined the effects of different light illuminance, building floor level and their association with rice stages as a focal cause of P. fuscipes dispersion from the rice fields towards human dwellings. The present study showed a significant interaction between different light illuminances and rice cultivation phases in attracting P. fuscipes to disperse and invade human dwellings. The highest number of P. fuscipes was captured near the bright light. P. fuscipes flights increased in line with each floor level, and the highest captures took place at higher building floor levels (levels 2 and 3) compared to lower building floor levels (ground floor and level 1) of a three storey apartment in both rice seasons. This finding not only conveys a better understanding on P. fuscipes dispersal pattern, but also draws public attention on the occurrence of dermatitis linearis caused by the Paederus beetles.
  4. Vigneswari S, Murugaiyah V, Kaur G, Abdul Khalil HP, Amirul AA
    Biomed Mater, 2016 10 06;11(5):055009.
    PMID: 27710927
    Polyhydroxyalkanoate (PHA) is a microbial polymer that has been at the forefront of many attempts at tissue engineering. However, the surface of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is hydrophobic with few recognition sites for cell attachment. Various concentrations of fish-scale collagen peptides (FSCPs) were incorporated into P(3HB-co-4HB) copolymer by aminolysis. Later, FSCPs were introduced onto the aminolyzed P(3HB-co-4HB) scaffolds. Introduction of the FSCP groups was verified using Fourier transform infrared spectroscopy and the ninhydrin method. The effect of the incorporation of FSCPs on hydrophilicity was investigated using the water contact angle. As the concentration of FSCPs increased, the water contact angle decreased. In vitro study demonstrated that P(3HB-co-4HB)/FSCP scaffolds provided better cell attachment and growth of L929 mouse fibroblast cells and better cell proliferation. In vivo study showed that P(3HB-co-4HB)/1.5 wt% FSCPs had a significant effect on wound contractions, with the highest percentage of wound closure (61%) in 7 d.
  5. Amirul AA, Yahya AR, Sudesh K, Azizan MN, Majid MI
    Bioresour Technol, 2008 Jul;99(11):4903-9.
    PMID: 17981028
    Cupriavidus sp. USMAA1020 was isolated from Malaysian environment and able to synthesize poly(3-hydroxybutyrate-co-4-hydroxybutyrate), [P(3HB-co-4HB)] when grown on gamma-butyrolactone as the sole carbon source. The polyester was purified from freeze-dried cells and analyzed by nuclear magnetic resonance (NMR) spectroscopy. 1H and 13C NMR results confirmed the presence of 3HB and 4HB monomers. In a one-step cultivation process, P(3HB-co-4HB) accumulation by Cupriavidus sp. USMAA1020 was affected by carbon to nitrogen ratio (C/N). A two-step cultivation process accumulated P(3HB-co-4HB) copolyester with a higher 4HB fraction (53 mol%) in nitrogen-free mineral medium containing gamma-butyrolactone. The biosynthesis of P(3HB-co-4HB) was also achieved by using 4-hydroxybutyric acid and alkanediol as 1,4-butanediol. The composition of copolyesters varied from 32 to 51 mol% 4HB, depending on the carbon sources supplied. The copolyester produced by Cupriavidus sp. USMAA1020 has a random sequence distribution of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) units when analyzed by nuclear magnetic resonance (NMR) spectroscopy. When gamma-butyrolactone was used as the sole carbon source, the 4HB fraction in copolyester increased from 25 to 60 mol% as the concentration of gamma-butyrolactone in the culture medium increased from 2.5 g/L to 20.0 g/L.
  6. Huong KH, Kannusamy S, Lim SY, Amirul AA
    J Ind Microbiol Biotechnol, 2015 Sep;42(9):1291-7.
    PMID: 26233315 DOI: 10.1007/s10295-015-1657-y
    Two-stage fermentation was normally employed to achieve a high poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] productivity with higher 4HB molar fraction. Here, we demonstrated single-stage fermentation method which is more industrial feasible by implementing mixed-substrate cultivation strategy. Studies on bioreactor scale show a remarkably high PHA accumulation of 73 wt%, contributing to a high PHA concentration and product yield of 8.6 g/L and 2.7 g/g, respectively. This fermentation strategy has resulted in copolymers with wider range of 4HB monomer composition, which ranges from 12 to 55 mol%. These copolymers show a broad range of weight average molecular weight (M w ) from 119.5 to 407.0 kDa. The copolymer characteristics were found to be predominantly affected by the nature of the substrates and the mixture strategies, regardless of the 4HB monomer compositions. This was supported by the determination of copolymer randomness using (13)C-NMR analysis. The study warrants significantly in the copolymer scale-up and modeling at industrial level.
  7. Shafie NA, Lau NS, Ramachandran H, Amirul AA
    Genome Announc, 2017 Jan 19;5(3).
    PMID: 28104662 DOI: 10.1128/genomeA.01498-16
    Cupriavidus sp. USMAA1020, USMAA2-4, and USMAHM13 are capable of producing polyhydroxyalkanoate (PHA). This biopolymer is an alternative solution to synthetic plastics, whereby polyhydroxyalkanoate synthase is the key enzyme involved in PHA biosynthesis. Here, we report the complete genomes of three Cupriavidus sp. strains: USMAA1020, USMAA2-4, and USMAHM13.
  8. Moh TH, Lau NS, Furusawa G, Amirul AA
    Stand Genomic Sci, 2017;12:36.
    PMID: 28694917 DOI: 10.1186/s40793-017-0248-0
    Microbulbifer sp. CCB-MM1 is a halophile isolated from estuarine sediment of Matang Mangrove Forest, Malaysia. Based on 16S rRNA gene sequence analysis, strain CCB-MM1 is a potentially new species of genus Microbulbifer. Here we describe its features and present its complete genome sequence with annotation. The genome sequence is 3.86 Mb in size with GC content of 58.85%, harbouring 3313 protein coding genes and 92 RNA genes. A total of 71 genes associated with carbohydrate active enzymes were found using dbCAN. Ectoine biosynthetic genes, ectABC operon and ask_ect were detected using antiSMASH 3.0. Cell shape determination genes, mreBCD operon, rodA and rodZ were annotated, congruent with the rod-coccus cell cycle of the strain CCB-MM1. In addition, putative mreBCD operon regulatory gene, bolA was detected, which might be associated with the regulation of rod-coccus cell cycle observed from the strain.
  9. Ramachandran H, Shafie NAH, Sudesh K, Azizan MN, Majid MIA, Amirul AA
    Antonie Van Leeuwenhoek, 2018 04;111(4):637.
    PMID: 29285661 DOI: 10.1007/s10482-017-0998-0
    In the original publication of the article, it was noted that Fig. 1 present an image of Cupriavidus malaysiensis strain USMAHM13 and not of strain USMAA1020, as indicated in the figure legend. The image in the original version is thus noted to serve as a record of strain USMAHM13 and the corrected version of Fig. 1 is reprinted below.
  10. Ramachandran H, Shafie NAH, Sudesh K, Azizan MN, Majid MIA, Amirul AA
    Antonie Van Leeuwenhoek, 2018 Mar;111(3):361-372.
    PMID: 29022146 DOI: 10.1007/s10482-017-0958-8
    Bacterial classification on the basis of a polyphasic approach was conducted on three poly(3 hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] accumulating bacterial strains that were isolated from samples collected from Malaysian environments; Kulim Lake, Sg. Pinang river and Sg. Manik paddy field. The Gram-negative, rod-shaped, motile, non-sporulating and non-fermenting bacteria were shown to belong to the genus Cupriavidus of the Betaproteobacteria on the basis of their 16S rRNA gene sequence analyses. The sequence similarity value with their near phylogenetic neighbour, Cupriavidus pauculus LMG3413T, was 98.5%. However, the DNA-DNA hybridization values (8-58%) and ribotyping analysis both enabled these strains to be differentiated from related Cupriavidus species with validly published names. The RiboPrint patterns of the three strains also revealed that the strains were genetically related even though they displayed a clonal diversity. The major cellular fatty acids detected in these strains included C15:0 ISO 2OH/C16:1 ω7c, hexadecanoic (16:0) and cis-11-octadecenoic (C18:1 ω7c). Their G+C contents ranged from 68.0  to 68.6 mol%, and their major isoprenoid quinone was Ubiquinone Q-8. Of these three strains, only strain USMAHM13 (= DSM 25816 = KCTC 32390) was discovered to exhibit yellow pigmentation that is characteristic of the carotenoid family. Their assembled genomes also showed that the three strains were not identical in terms of their genome sizes that were 7.82, 7.95 and 8.70 Mb for strains USMAHM13, USMAA1020 and USMAA2-4, respectively, which are slightly larger than that of Cupriavidus necator H16 (7.42 Mb). The average nucleotide identity (ANI) results indicated that the strains were genetically related and the genome pairs belong to the same species. On the basis of the results obtained in this study, the three strains are considered to represent a novel species for which the name Cupriavidus malaysiensis sp. nov. is proposed. The type strain of the species is USMAA1020T (= DSM 19416T = KCTC 32390T).
  11. Amelia TSM, Amirul AA, Bhubalan K
    Data Brief, 2018 Feb;16:75-80.
    PMID: 29188224 DOI: 10.1016/j.dib.2017.11.011
    We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).
  12. Chai CJ, Amirul AA, Vigneswari S
    Data Brief, 2020 Feb;28:104777.
    PMID: 31871967 DOI: 10.1016/j.dib.2019.104777
    Electrospinning is a promising approach to fabricate desirable electropsun nanofibrous scaffold that could be applied in the medical fields. In this study, bacterial copolymer poly(3-hydroxybutyrate-co-68 mol% 4-hydroxybutyrate) [P(3HB-co-68mol% 4HB)] copolymer produced was fabricated into electrospun nanofibers using various combination of electrospinning parameters including the polymer solution, applied voltage and injection speed. The morphology of the fabricated scaffolds were observed using scanning electron microscope (SEM). The SEM images were analysed for the fibre diameter distribution of the scaffolds using Image Analyser. The results revealed that the 8 wt% of polymer solution, 25 kV/cm of the applied voltage and 1.5 mL/h of the injection speed was the most suitable combination. This electrospinning parameters combination fabricated nanofibrous P(3HB-co-4HB) scaffold with smooth, beadles and uniform nanofibers with small fibre diameter distribution.
  13. Govindasamy S, Syafiq IM, Amirul AA, Amin RM, Bhubalan K
    Data Brief, 2019 Apr;23:103675.
    PMID: 30788397 DOI: 10.1016/j.dib.2019.01.023
    A significant source of microplastics is from the usage of microbeads in the market since petrochemical plastic bead is a material used in cosmetic scrubs. A possible way to counteract the problem is by the substitution of synthetic plastic to natural biodegradable polymer. Polyhydroxyalkanoate (PHA) is a general class of thermoplastic microbial polymer and it is the best alternative to some petrochemical plastics due to its biodegradability. Some PHA has earned its way into cosmetic application due to its biocompatibility. This data article reports data on the development of biodegradable microbeads by using the double emulsion solvent evaporation technique. Our data describe the extraction of biopolymer from marine bacteria that was cultivated in shaken flask culture, removal of endotoxins using oxidizing agent, the production of microbeads using a peristaltic pump with a specific flowrate and silicon tubing, and the cytotoxicity of the microbeads.
  14. Faisalina AF, Sonvico F, Colombo P, Amirul AA, Wahab HA, Majid MIA
    Nanomaterials (Basel), 2020 Oct 26;10(11).
    PMID: 33114572 DOI: 10.3390/nano10112123
    Polyhydroxyalkanoate (PHA) copolymers show a relatively higher in vivo degradation rate compared to other PHAs, thus, they receive a great deal of attention for a wide range of medical applications. Nanoparticles (NPs) loaded with poorly water-soluble anticancer drug docetaxel (DCX) were produced using poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-co-4HB), copolymers biosynthesised from Cupriavidus malaysiensis USMAA1020 isolated from the Malaysian environment. Three copolymers with different molar proportions of 4-hydroxybutirate (4HB) were used: 16% (PHB16), 30% (PHB30) and 70% (PHB70) 4HB-containing P(3HB-co-4HB). Blank and DCX-loaded nanoparticles were then characterized for their size and size distribution, surface charge, encapsulation efficiency and drug release. Preformulation studies showed that an optimised formulation could be achieved through the emulsification/solvent evaporation method using PHB70 with the addition of 1.0% PVA, as stabilizer and 0.03% VitE-TPGS, as surfactant. DCX-loaded PHB70 nanoparticles (DCX-PHB70) gave the desired particle size distribution in terms of average particle size around 150 nm and narrow particle size distribution (polydispersity index (PDI) below 0.100). The encapsulation efficiency result showed that at 30% w/w drug-to-polymer ratio: DCX- PHB16 NPs were able to encapsulate up to 42% of DCX; DCX-PHB30 NPs encapsulated up to 46% of DCX and DCX-PHB70 NPs encapsulated up to 50% of DCX within the nanoparticle system. Approximately 60% of DCX was released from the DCX-PHB70 NPs within 7 days for 5%, 10% and 20% of drug-to-polymer ratio while for the 30% and 40% drug-to-polymer ratios, an almost complete drug release (98%) after 7 days of incubation was observed.
  15. Sam KK, Lau NS, Furusawa G, Amirul AA
    Genome Announc, 2017 Oct 19;5(42).
    PMID: 29051257 DOI: 10.1128/genomeA.01147-17
    Hahella sp. strain CCB-MM4 is a halophilic bacterium isolated from estuarine mangrove sediment. The genome sequence of Hahella sp. CCB-MM4 provides insights into exopolysaccharide biosynthesis and the lifestyle of the bacterium thriving in a saline mangrove environment.
  16. Sam KK, Lau NS, Furusawa G, Amirul AA
    Microbiol Resour Announc, 2019 Nov 14;8(46).
    PMID: 31727719 DOI: 10.1128/MRA.01248-19
    Pararhodobacter-like strain CCB-MM2 is a halophilic alphaproteobacterium isolated from estuarine sediment collected from Matang Mangrove Forest in Malaysia. Here, we present the draft genome sequence of CCB-MM2 and provide insights into its physiological roles and metabolic potential.
  17. Vigneswari S, Chai JM, Kamarudin KH, Amirul AA, Focarete ML, Ramakrishna S
    Front Bioeng Biotechnol, 2020;8:567693.
    PMID: 33195129 DOI: 10.3389/fbioe.2020.567693
    Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
  18. Irdahayu NMNM, Shantini K, Huong KH, Vigneswari S, Aziz NA, Azizan MNM, et al.
    Eng Life Sci, 2017 Sep;17(9):1050-1059.
    PMID: 32624855 DOI: 10.1002/elsc.201600217
    Separation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from bacterial cell matter is a critical step in the downstream process with respect to material quality and eco-balance as P(3HB-co-4HB) is widely used for biomedical applications. Therefore, an efficient and eco-based extraction of P(3HB-co-4HB) using a combination of NaOH and Lysol in digesting the non-polymeric cell material (NPCM) digestion is developed. The NaOH and Lysol show synergistic influence on the copolymer extraction at a high purity and recovery of 97 and 98 wt% respectively. The optimized cell digestion method was found applicable to a vast batch of cells containing copolymers from various 4HB monomer compositions. At the largest extraction volume of 100 L, P(3HB-co-4HB) with a purity of 89 wt% was extracted with a maximum recovery of 90 wt%. The method developed has also eliminated the cell pretreatment step. The extraction method developed in this research has not only produced an economic and efficient copolymer recovery but has also retained the copolymer quality, in term of its molecular weight and thermal properties. It demonstrates a practical and promising downstream processing method in recovering the copolymer effectively from the bacterial biomass.
  19. Vigneswari S, Vijaya S, Majid MI, Sudesh K, Sipaut CS, Azizan MN, et al.
    J Ind Microbiol Biotechnol, 2009 Apr;36(4):547-56.
    PMID: 19189144 DOI: 10.1007/s10295-009-0525-z
    Cupriavidus sp. USMAA1020, a local isolate was able to biosynthesis poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer with various 4HB precursors as the sole carbon source. Manipulation of the culture conditions such as cell concentration, phosphate ratio and culture aeration significantly affected the synthesis of P(3HB-co-4HB) copolymer and 4HB composition. P(3HB-co-4HB) copolymer with 4HB compositions ranging from 23 to 75 mol% 4HB with various mechanical and thermal properties were successfully produced by varying the medium aeration. The physical and mechanical properties of P(3HB-co-4HB) copolymers were characterized by NMR spectroscopy, gel-permeation chromatography, tensile test, and differential scanning calorimetry. The number-average molecular weights (M (n)) of copolymers ranged from 260 x 10(3) to 590 x 10(3)Da, and the polydispersities (M (w)/M (n)) were between 1.8 and 3.0. Increases in the 4HB composition lowered the molecular weight of these copolymers. In addition, the increase in 4HB composition affected the randomness of copolymer, melting temperature (T (m)), glass transition temperature (T (g)), tensile strength, and elongation to break. Enzymatic degradation of P(3HB-co-4HB) films with an extracellular depolymerase from Ochrobactrum sp. DP5 showed that the degradation rate increased proportionally with time as the 4HB fraction increased from 17 to 50 mol% but were much lower with higher 4HB fraction. Degradation of P(3HB-co-4HB) films with lipase from Chromobacterium viscosum exhibited highest degradation rate at 75 mol% 4HB. The biocompatibility of P(3HB-co-4HB) copolymers were evaluated and these copolymers have been shown to support the growth and proliferation of fibroblast cells.
  20. Anis SN, Nurhezreen MI, Sudesh K, Amirul AA
    Appl Biochem Biotechnol, 2012 Jun;167(3):524-35.
    PMID: 22569781 DOI: 10.1007/s12010-012-9677-9
    A simple, efficient and economical method for the recovery of P(3HB-co-3HHx) was developed using various chemicals and parameters. The initial content of P(3HB-co-3HHx) in bacterial cells was 50-60 wt%, whereas the monomer composition of 3HHx used in this experiments was 3-5 mol%. It was found that sodium hydroxide (NaOH) was the most effective chemical for the recovery of biodegradable polymer. High polyhydroxyalkanoate purity and recovery yield both in the range of 80-90 wt% were obtained when 10-30 mg/ml of cells were incubated in NaOH at the concentration of 0.1 M for 60-180 min at 30 °C and polished using 20 % (v/v) of ethanol.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links