Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Goossens B, Abdullah ZB, Sinyor JB, Ancrenaz M
    Folia Primatol., 2004 Jan-Feb;75(1):23-6.
    PMID: 14716150
  2. Simon D, Davies G, Ancrenaz M
    PLoS One, 2019;14(7):e0218819.
    PMID: 31314781 DOI: 10.1371/journal.pone.0218819
    The Bornean orangutan is critically endangered and monitoring its population is needed to inform effective conservation management. In this paper, we present results of 2014-17 aerial nest surveys of the major orangutan populations in Sabah and compare them with baseline data produced during surveys conducted in 2002-03 using similar methods. Our results show three important points: a) by increasing the survey effort (estimated at 15-25% cover), sparsely scattered orangutan sub-populations not recorded in the previous aerial surveys were located and the accuracy of the nest count estimates is expected to improve; b) large populations in the interior forests of Sabah, occupying sustainably managed logged and unlogged forests, have been stable over 15 years and are of vital importance for the species' conservation; c) fragmented populations located in eastern Sabah, that are surrounded by extensive oil palm plantations, have declined at varying rates.
  3. Marshall AJ, Wich S, Ancrenaz M
    Nature, 2016 Jul 28;535(7613):493.
    PMID: 27466115 DOI: 10.1038/535493a
  4. Sherman J, Unwin S, Travis DA, Oram F, Wich SA, Jaya RL, et al.
    Front Vet Sci, 2021;8:749547.
    PMID: 34869722 DOI: 10.3389/fvets.2021.749547
    Critically Endangered orangutans are translocated in several situations: reintroduced into historic range where no wild populations exist, released to reinforce existing wild populations, and wild-to-wild translocated to remove individuals from potentially risky situations. Translocated orangutans exposed to human diseases, including Coronavirus Disease 2019 (COVID-19), pose risks to wild and previously released conspecifics. Wildlife disease risk experts recommended halting great ape translocations during the COVID-19 pandemic to minimize risk of disease transmission to wild populations. We collected data on orangutan releases and associated disease risk management in Indonesia during the COVID-19 pandemic, and developed a problem description for orangutan disease and conservation risks. We identified that at least 15 rehabilitated ex-captive and 27 wild captured orangutans were released during the study period. Identified disease risks included several wild-to-wild translocated orangutans in direct contact or proximity to humans without protective equipment, and formerly captive rehabilitated orangutans that have had long periods of contact and potential exposure to human diseases. While translocation practitioners typically employ mitigation measures to decrease disease transmission likelihood, these measures cannot eliminate all risk, and are not consistently applied. COVID-19 and other diseases of human origin can be transmitted to orangutans, which could have catastrophic impacts on wild orangutans, other susceptible fauna, and humans should disease transmission occur. We recommend stakeholders conduct a Disease Risk Analysis for orangutan translocation, and improve pathogen surveillance and mitigation measures to decrease the likelihood of potential outbreaks. We also suggest refocusing conservation efforts on alternatives to wild-to-wild translocation including mitigating human-orangutan interactions, enforcing laws and protecting orangutan habitats to conserve orangutans in situ.
  5. Davies AB, Ancrenaz M, Oram F, Asner GP
    Proc Natl Acad Sci U S A, 2017 Aug 01;114(31):8307-8312.
    PMID: 28720703 DOI: 10.1073/pnas.1706780114
    The conservation of charismatic and functionally important large species is becoming increasingly difficult. Anthropogenic pressures continue to squeeze available habitat and force animals into degraded and disturbed areas. Ensuring the long-term survival of these species requires a well-developed understanding of how animals use these new landscapes to inform conservation and habitat restoration efforts. We combined 3 y of highly detailed visual observations of Bornean orangutans with high-resolution airborne remote sensing (Light Detection and Ranging) to understand orangutan movement in disturbed and fragmented forests of Malaysian Borneo. Structural attributes of the upper forest canopy were the dominant determinant of orangutan movement among all age and sex classes, with orangutans more likely to move in directions of increased canopy closure, tall trees, and uniform height, as well as avoiding canopy gaps and moving toward emergent crowns. In contrast, canopy vertical complexity (canopy layering and shape) did not affect movement. Our results suggest that although orangutans do make use of disturbed forest, they select certain canopy attributes within these forests, indicating that not all disturbed or degraded forest is of equal value for the long-term sustainability of orangutan populations. Although the value of disturbed habitats needs to be recognized in conservation plans for wide-ranging, large-bodied species, minimal ecological requirements within these habitats also need to be understood and considered if long-term population viability is to be realized.
  6. Goossens B, Setchell JM, James SS, Funk SM, Chikhi L, Abulani A, et al.
    Mol Ecol, 2006 Aug;15(9):2577-88.
    PMID: 16842428
    Behavioural observations suggest that orang-utans are semi-solitary animals with females being philopatric and males roaming more widely in search of receptive partners, leading to the prediction that females are more closely related than males at any given site. In contrast, our study presents evidence for male and female philopatry in the orang-utan. We examined patterns of relatedness and parentage in a wild orang-utan population in Borneo using noninvasively collected DNA samples from animals observed to defecate, and microsatellite markers to assess dispersal and mating strategies. Surprisingly, resident females were equally as related to other resident females (mean r(xy) = 0.303) as resident males were to other resident males (mean r(xy) = 0.305). Moreover, resident females were more related to each other and to the resident males than they were to nonresident females, and resident males were more related to each other (and resident females) than they were to nonresident males. We assigned genetic mothers to 12 individuals in the population, while sires could be identified for eight. Both flanged males and unflanged males achieved paternity, similar to findings reported for Sumatran orang-utans.
  7. Goossens B, Chikhi L, Jalil MF, Ancrenaz M, Lackman-Ancrenaz I, Mohamed M, et al.
    Mol Ecol, 2005 Feb;14(2):441-56.
    PMID: 15660936
    We investigated the genetic structure within and among Bornean orang-utans (Pongo pygmaeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. DNA was extracted from hair and faecal samples for 200 wild individuals collected during boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to characterize patterns of genetic diversity. We found that genetic diversity was high in the set of samples (mean H(E) = 0.74) and that genetic differentiation was significant between the samples (average F(ST) = 0.04, P < 0.001) with F(ST) values ranging from low (0.01) to moderately large (0.12) values. Pairwise F(ST) values were significantly higher across the Kinabatangan River than between samples from the same river side, thereby confirming the role of the river as a natural barrier to gene flow. The correlation between genetic and geographical distance was tested by means of a series of Mantel tests based on different measures of geographical distance. We used a Bayesian method to estimate immigration rates. The results indicate that migration is unlikely across the river but cannot be completely ruled out because of the limited F(ST) values. Assignment tests confirm the overall picture that gene flow is limited across the river. We found that migration between samples from the same side of the river had a high probability indicating that orang-utans used to move relatively freely between neighbouring areas. This strongly suggests that there is a need to maintain migration between isolated forest fragments. This could be done by restoring forest corridors alongside the river banks and between patches.
  8. Gregory SD, Brook BW, Goossens B, Ancrenaz M, Alfred R, Ambu LN, et al.
    PLoS One, 2012;7(9):e43846.
    PMID: 22970145 DOI: 10.1371/journal.pone.0043846
    Southeast Asian deforestation rates are among the world's highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation.
  9. Jalil MF, Cable J, Sinyor J, Lackman-Ancrenaz I, Ancrenaz M, Bruford MW, et al.
    Mol Ecol, 2008 Jun;17(12):2898-909.
    PMID: 18494768 DOI: 10.1111/j.1365-294X.2008.03793.x
    We examined mitochondrial DNA control region sequences of 73 Kinabatangan orangutans to test the hypothesis that the phylogeographical structure of the Bornean orangutan is influenced by riverine barriers. The Lower Kinabatangan Wildlife Sanctuary contains one of the most northern populations of orangutans (Pongo pygmaeus) on Borneo and is bisected by the Kinabatangan River, the longest river in Sabah. Orang-utan samples on either side of the river were strongly differentiated with a high Phi(ST) value of 0.404 (P < 0.001). Results also suggest an east-west gradient of genetic diversity and evidence for population expansion along the river, possibly reflecting a postglacial colonization of the Kinabatangan floodplain. We compared our data with previously published sequences of Bornean orangutans in the context of river catchment structure on the island and evaluated the general relevance of rivers as barriers to gene flow in this long-lived, solitary arboreal ape.
  10. Meijaard E, Erman A, Ancrenaz M, Goossens B
    Science, 2024 Jan 19;383(6680):267.
    PMID: 38236988 DOI: 10.1126/science.adn3857
  11. Hockings KJ, McLennan MR, Carvalho S, Ancrenaz M, Bobe R, Byrne RW, et al.
    Trends Ecol Evol, 2015 Apr;30(4):215-22.
    PMID: 25766059 DOI: 10.1016/j.tree.2015.02.002
    We are in a new epoch, the Anthropocene, and research into our closest living relatives, the great apes, must keep pace with the rate that our species is driving change. While a goal of many studies is to understand how great apes behave in natural contexts, the impact of human activities must increasingly be taken into account. This is both a challenge and an opportunity, which can importantly inform research in three diverse fields: cognition, human evolution, and conservation. No long-term great ape research site is wholly unaffected by human influence, but research at those that are especially affected by human activity is particularly important for ensuring that our great ape kin survive the Anthropocene.
  12. Abram NK, MacMillan DC, Xofis P, Ancrenaz M, Tzanopoulos J, Ong R, et al.
    PLoS One, 2016;11(6):e0156481.
    PMID: 27276218 DOI: 10.1371/journal.pone.0156481
    Reducing Emissions from Deforestation and forest Degradation (REDD+) aims to avoid forest conversion to alternative land-uses through financial incentives. Oil-palm has high opportunity costs, which according to current literature questions the financial competitiveness of REDD+ in tropical lowlands. To understand this more, we undertook regional fine-scale and coarse-scale analyses (through carbon mapping and economic modelling) to assess the financial viability of REDD+ in safeguarding unprotected forest (30,173 ha) in the Lower Kinabatangan floodplain in Malaysian Borneo. Results estimate 4.7 million metric tons of carbon (MgC) in unprotected forest, with 64% allocated for oil-palm cultivations. Through fine-scale mapping and carbon accounting, we demonstrated that REDD+ can outcompete oil-palm in regions with low suitability, with low carbon prices and low carbon stock. In areas with medium oil-palm suitability, REDD+ could outcompete oil palm in areas with: very high carbon and lower carbon price; medium carbon price and average carbon stock; or, low carbon stock and high carbon price. Areas with high oil palm suitability, REDD+ could only outcompete with higher carbon price and higher carbon stock. In the coarse-scale model, oil-palm outcompeted REDD+ in all cases. For the fine-scale models at the landscape level, low carbon offset prices (US $3 MgCO2e) would enable REDD+ to outcompete oil-palm in 55% of the unprotected forests requiring US $27 million to secure these areas for 25 years. Higher carbon offset price (US $30 MgCO2e) would increase the competitiveness of REDD+ within the landscape but would still only capture between 69%-74% of the unprotected forest, requiring US $380-416 million in carbon financing. REDD+ has been identified as a strategy to mitigate climate change by many countries (including Malaysia). Although REDD+ in certain scenarios cannot outcompete oil palm, this research contributes to the global REDD+ debate by: highlighting REDD+ competitiveness in tropical floodplain landscapes; and, providing a robust approach for identifying and targeting limited REDD+ funds.
  13. Abram NK, Xofis P, Tzanopoulos J, MacMillan DC, Ancrenaz M, Chung R, et al.
    PLoS One, 2014;9(6):e95388.
    PMID: 24887555 DOI: 10.1371/journal.pone.0095388
    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world's tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha-yr-$637/ha-yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha-yr-$-65/ha-yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring these into policy and practice, may provide conservation and economic opportunities within these seemingly high opportunity cost landscapes.
  14. Voigt M, Wich SA, Ancrenaz M, Meijaard E, Abram N, Banes GL, et al.
    Curr Biol, 2018 03 05;28(5):761-769.e5.
    PMID: 29456144 DOI: 10.1016/j.cub.2018.01.053
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT.
  15. Ancrenaz M, Ambu L, Sunjoto I, Ahmad E, Manokaran K, Meijaard E, et al.
    PLoS One, 2010;5(7):e11510.
    PMID: 20634974 DOI: 10.1371/journal.pone.0011510
    Today the majority of wild great ape populations are found outside of the network of protected areas in both Africa and Asia, therefore determining if these populations are able to survive in forests that are exploited for timber or other extractive uses and how this is managed, is paramount for their conservation.
  16. Ancrenaz M, Gimenez O, Ambu L, Ancrenaz K, Andau P, Goossens B, et al.
    PLoS Biol, 2005 Jan;3(1):e3.
    PMID: 15630475
    Great apes are threatened with extinction, but precise information about the distribution and size of most populations is currently lacking. We conducted orangutan nest counts in the Malaysian state of Sabah (North Borneo), using a combination of ground and helicopter surveys, and provided a way to estimate the current distribution and size of the populations living throughout the entire state. We show that the number of nests detected during aerial surveys is directly related to the estimated true animal density and that a helicopter is an efficient tool to provide robust estimates of orangutan numbers. Our results reveal that with a total estimated population size of about 11,000 individuals, Sabah is one of the main strongholds for orangutans in North Borneo. More than 60% of orangutans living in the state occur outside protected areas, in production forests that have been through several rounds of logging extraction and are still exploited for timber. The role of exploited forests clearly merits further investigation for orangutan conservation in Sabah.
  17. English M, Gillespie G, Goossens B, Ismail S, Ancrenaz M, Linklater W
    PeerJ, 2015;3:e1030.
    PMID: 26290779 DOI: 10.7717/peerj.1030
    Plant recovery rates after herbivory are thought to be a key factor driving recursion by herbivores to sites and plants to optimise resource-use but have not been investigated as an explanation for recursion in large herbivores. We investigated the relationship between plant recovery and recursion by elephants (Elephas maximus borneensis) in the Lower Kinabatangan Wildlife Sanctuary, Sabah. We identified 182 recently eaten food plants, from 30 species, along 14 × 50 m transects and measured their recovery growth each month over nine months or until they were re-browsed by elephants. The monthly growth in leaf and branch or shoot length for each plant was used to calculate the time required (months) for each species to recover to its pre-eaten length. Elephant returned to all but two transects with 10 eaten plants, a further 26 plants died leaving 146 plants that could be re-eaten. Recursion occurred to 58% of all plants and 12 of the 30 species. Seventy-seven percent of the re-eaten plants were grasses. Recovery times to all plants varied from two to twenty months depending on the species. Recursion to all grasses coincided with plant recovery whereas recursion to most browsed plants occurred four to twelve months before they had recovered to their previous length. The small sample size of many browsed plants that received recursion and uneven plant species distribution across transects limits our ability to generalise for most browsed species but a prominent pattern in plant-scale recursion did emerge. Plant recovery time was a good predictor of time to recursion but varied as a function of growth form (grass, ginger, palm, liana and woody) and differences between sites. Time to plant recursion coincided with plant recovery time for the elephant's preferred food, grasses, and perhaps also gingers, but not the other browsed species. Elephants are bulk feeders so it is likely that they time their returns to bulk feed on these grass species when quantities have recovered sufficiently to meet their intake requirements. The implications for habitat and elephant management are discussed.
  18. Meijaard E, Wich S, Ancrenaz M, Marshall AJ
    Ann N Y Acad Sci, 2012 Feb;1249:29-44.
    PMID: 22175247 DOI: 10.1111/j.1749-6632.2011.06288.x
    Orangutan survival is threatened by habitat loss and illegal killing. Most wild populations will disappear over the next few decades unless threats are abated. Saving orangutans is ultimately in the hands of the governments and people of Indonesia and Malaysia, which need to ensure that habitats of viable orangutan populations are protected from deforestation and well managed to ensure no hunting takes place. Companies working in orangutan habitat also have to play a much bigger role in habitat management. Although the major problems and the direct actions required to solve them-reducing forest loss and hunting-have been known for decades, orangutan populations continue to decline. Orangutan populations in Sumatra and Borneo have declined by between 2,280 and 5,250 orangutans annually over the past 25 years. As the total current population for the two species is some 60,000 animals in an area of about 90,000 km(2) , there is not much time left to make conservation efforts truly effective. Our review discusses what has and has not worked in conservation to guide future conservation efforts.
  19. Gaveau DL, Sloan S, Molidena E, Yaen H, Sheil D, Abram NK, et al.
    PLoS One, 2014;9(7):e101654.
    PMID: 25029192 DOI: 10.1371/journal.pone.0101654
    The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.
  20. Santika T, Ancrenaz M, Wilson KA, Spehar S, Abram N, Banes GL, et al.
    Sci Rep, 2017 07 07;7(1):4839.
    PMID: 28687788 DOI: 10.1038/s41598-017-04435-9
    For many threatened species the rate and drivers of population decline are difficult to assess accurately: species' surveys are typically restricted to small geographic areas, are conducted over short time periods, and employ a wide range of survey protocols. We addressed methodological challenges for assessing change in the abundance of an endangered species. We applied novel methods for integrating field and interview survey data for the critically endangered Bornean orangutan (Pongo pygmaeus), allowing a deeper understanding of the species' persistence through time. Our analysis revealed that Bornean orangutan populations have declined at a rate of 25% over the last 10 years. Survival rates of the species are lowest in areas with intermediate rainfall, where complex interrelations between soil fertility, agricultural productivity, and human settlement patterns influence persistence. These areas also have highest threats from human-wildlife conflict. Survival rates are further positively associated with forest extent, but are lower in areas where surrounding forest has been recently converted to industrial agriculture. Our study highlights the urgency of determining specific management interventions needed in different locations to counter the trend of decline and its associated drivers.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links