Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Anwar F, Saleem U, Rehman AU, Ahmad B, Ismail T, Mirza MU, et al.
    ACS Omega, 2021 Apr 27;6(16):10897-10909.
    PMID: 34056243 DOI: 10.1021/acsomega.1c00654
    Toxicity studies are necessary for the development of a new drug. Naphthalene is a bicyclic molecule and is easy to derivatize. In our previous study, a derivative of naphthalene (4-phenyl,3,4-dihydrobenzoquinoline-2(H)one) was synthesized and reported its in vitro activity on different enzymes. This study was a probe to investigate the toxicity potential of that compound (SF3). Acute oral (425), subacute (407), and teratogenicity (414) studies were planned according to their respective guidelines given by organization of economic cooperation and development (OECD). Acute oral, subacute, and teratogenicity studies were carried out on 2000, 5-40, and 40 mg/kg doses. Blood samples were collected for hematological and biochemical analyses. Vital organs were excised for oxidative stress (superoxide dismutase, catalase, glutathione, and malondialdehyde) and histopathological analysis. LD50 of SF3 was higher than 2000 mg/kg. In acute and subacute studies, levels of alkaline phosphates and aspartate transaminase were increased. Teratogenicity showed no resorptions, no skeletal or soft tissue abnormalities, and no cleft pallet. Oxidative stress biomarkers were close to the normal, and no increase in the malondialdehyde level was seen. Histopathological studies revealed normal tissue architecture of the selected organs, except kidney, in acute oral and subacute toxicity studies at 40 mg/kg. The study concluded that SF3 is safer if used as a drug.
  2. Zahoor S, Anwar F, Qadir R, Soufan W, Sakran M
    ACS Omega, 2023 Jun 27;8(25):22613-22622.
    PMID: 37396275 DOI: 10.1021/acsomega.3c01155
    The current study appraises the variations in the yield and physicochemical and antioxidant attributes among kernel oils from the seven most widely consumed varieties of Pakistani mangoes, namely, Anwar Ratul, Dasehri, Fajri, Laal Badshah, Langra, Safed Chaunsa, and Sindhri. The yield of mango kernel oil (MKO) among the tested varieties of mangoes varied significantly (p < 0.05), ranging from 6.33% (Sindhri) to 9.88% (Dasehri). Physicochemical properties, including the saponification value, refractive index, iodine no., P.V, % acid value, free fatty acids, and unsaponifiable matter, for MKOs were noted to be 143.00-207.10 mg KOH/g, 1.443-1.457, 28.00-36.00 g/100 g, 5.5-2.0 meq/kg, 1.00-7.7%, 0.5-3.9 mg/g, and 1.2-3.3%, respectively. The fatty acid composition determined by GC-TIC-MS revealed the presence of 15 different fatty acids with variable contributions of saturated (41.92-52.86%) and unsaturated (47.140-58.08%) fatty acids. Among unsaturated fatty acids, values of monounsaturated and polyunsaturated fatty acids ranged from 41.92 to 52.85 and 7.72 to 16.47%, respectively. Oleic acid (25.69-48.57%), stearic acid (24.71-38.53%), linoleic acid (7.72-16.47%), and palmitic acid (10.00-13.26%) were the prominent fatty acids. The total phenolic content (TPC) and DPPH radical scavenging (IC50) capacity of MKOs varied from 7.03 to 11.00 mg GAE/g and 4.33 to 8.32 mg/mL, respectively. The results of most of the tested attributes varied significantly (p < 0.05) among the varieties selected. It can be concluded from the findings of this research work that MKOs from the tested varieties are potential sources of valuable ingredients for the development of nutrapharmaceuticals due to their potent antioxidant properties and high oleic fatty acid profile.
  3. Aziz T, Qadir R, Anwar F, Naz S, Nazir N, Nabi G, et al.
    PMID: 38386143 DOI: 10.1007/s12010-024-04875-w
    This research work seeks to evaluate the impact of selected enzyme complexes on the optimised release of phenolics from leaves of Pongamia pinnata. After preliminary solvent extraction, the P. pinnata leaf extract was subjected to enzymatic treatment, using enzyme cocktails such as kemzyme dry-plus, natuzyme, and zympex-014. It was noticed that zympex-014 had a greater extract yield (28.0%) than kemzyme dry-plus (17.0%) and natuzyme (18.0%). Based on the better outcomes, zympex-014-based extract values were subsequently applied to several RSM parameters. The selected model is suggested to be significant by the F value (12.50) and R2 value (0.9669). The applicability of the ANN model was shown by how closely the projected values from the ANN were to the experimental values. In terms of total phenolic contents (18.61 mg GAE/g), total flavonoid contents (12.56 mg CE/g), and DPPH test (IC50) (6.5 g/mL), antioxidant activities also shown significant findings. SEM analysis also revealed that the cell walls were damaged during enzymatic hydrolysis, as opposed to non-hydrolysed material. Using GC-MS, five potent phenolic compounds were identified in P. pinnata extract. According to the findings of this study, the recovery of phenolic bioactives and subsequent increase in the antioxidant capacity of P. pinnata leaf extract were both positively impacted by the optimisation approaches suggested, including the use of zympex-014.
  4. Bordbar S, Ebrahimpour A, Abdul Hamid A, Abdul Manap MY, Anwar F, Saari N
    Biomed Res Int, 2013;2013:849529.
    PMID: 23586061 DOI: 10.1155/2013/849529
    The stone fish (Actinopyga lecanora) ethanolic and methanolic tissue extracts were investigated for total phenolic contents (TPCs) as well as antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Both extracts showed low amount of phenolics (20.33 to 17.03 mg of gallic acid equivalents/100 g dried sample) and moderate antioxidant activity (39% to 34% DPPH(•) radical scavenging activity and 23.95 to 22.30 mmol/100 mL FeSO4 FRAP value). Enzymatic proteolysis was carried out in order to improve the antioxidant activity using six commercially available proteases under their optimum conditions. The results revealed that the highest increase in antioxidant activity up to 85% was obtained for papain-generated proteolysate, followed by alcalase (77%), trypsin (75%), pepsin (68%), bromelain (68%), and flavourzyme (50%) as measured by DPPH(•) radical scavenging activity, whilst for the FRAP value, the highest increase in the antioxidant activity up to 39.2 mmol/100 mL FeSO4 was obtained for alcalase-generated proteolysate, followed by papain (29.5 mmol/100 mL FeSO4), trypsin (23.2 mmol/100 mL FeSO4), flavourzyme (24.7 mmol/100 mL FeSO4), bromelain (22.9 mmol/100 mL FeSO4), and pepsin (20.8 mmol/100 mL FeSO4). It is obvious that proteolysis of stone fish tissue by proteolytic enzymes can considerably enhance its antioxidant activity.
  5. Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM
    Biotechnol Adv, 2014 12 12;33(1):80-116.
    PMID: 25499177 DOI: 10.1016/j.biotechadv.2014.12.003
    The growing momentum of several common life-style diseases such as myocardial infarction, cardiovascular disorders, stroke, hypertension, diabetes, and atherosclerosis has become a serious global concern. Recent developments in the field of proteomics offering promising solutions to solving such health problems stimulates the uses of biopeptides as one of the therapeutic agents to alleviate disease-related risk factors. Functional peptides are typically produced from protein via enzymatic hydrolysis under in vitro or in vivo conditions using different kinds of proteolytic enzymes. An array of biological activities, including antioxidative, antihypertensive, antidiabetic and immunomodulating has been ascribed to different types of biopeptides derived from various food sources. In fact, biopeptides are nutritionally and functionally important for regulating some physiological functions in the body; however, these are yet to be extensively addressed with regard to their production through advance strategies, mechanisms of action and multiple biological functionalities. This review mainly focuses on recent biotechnological advances that are being made in the field of production in addition to covering the mode of action and biological activities, medicinal health functions and therapeutic applications of biopeptides. State-of-the-art strategies that can ameliorate the efficacy, bioavailability, and functionality of biopeptides along with their future prospects are likewise discussed.
  6. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
  7. Zubair M, Anwar F, Arshad I, Malik S, Zafar MN
    Comb Chem High Throughput Screen, 2023;26(15):2625-2643.
    PMID: 37183472 DOI: 10.2174/1386207326666230512144834
    Rice (Oryza sativa L.), a cereal grass, belongs to the genus Oryza from the family Poaceae, which encompasses twenty-five species cultured in many countries of Asia, and partly in the rest of the world. From these species, two viz. Oryza sativa (O. sativa) Asian rice and Oryza glaberrima (O. glaberrima) African rice are commonly found and the most widely consumed staple food by a large part of the human population in the world, especially in Asia due to their nutritional and nutraceutical prospects. Rice, a popular source of carbohydrates, also contains a good amount of dietary fiber, minerals (Ca, Zn, Se, P, K, Mg, Fe, and Mn), protein and vitamin B along with several other medicinally important bioactives such as tocols (α-tocopherols and α-tocotrienols) (ßsitosterol) phenolic acids, flavonoids (apiginine), and oryzanol (24-Methylenecylcoartanyl transferulate). Rice bran is a byproduct of the rice polishing industry and is valuable in terms of containing 15-20% high-value oil. Because of the natural antioxidants present in rice, several medicinal benefits and biological properties can be attributed to rice consumption. The nutrient profile of rice varies based on several factors, such as grains (white, brown, red, and black/purple), the extent of polishing, and the preparation method. Considering the importance of rice as a traditional diet rich in high-value bioactives, together with the existing gap of related information, it is worthwhile to assemble a comprehensive review that focuses on the detailed profile of valuable nutrients and high-value phytochemicals and biological activities of rice to explore its functional food and nutraceutical applications. This review attempts to provide collective information on the essential rice cereal for its nutritional and antioxidant potential.
  8. Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, et al.
    Comput Biol Chem, 2020 Dec;89:107378.
    PMID: 33002716 DOI: 10.1016/j.compbiolchem.2020.107378
    Neurodegenerative diseases have complex etiology and pose a challenge to scientists to develop simple and cost-effective synthetic compounds as potential drug candidates for such diseases. Here, we report an extension of our previously published in silico screening, where we selected four new compounds as AChE inhibitors. Further, based on favorable binding possess, MD simulation and MMGBSA, two most promising compounds (3a and 3b) were selected, keeping in view the ease of synthesis and cost-effectiveness. Due to the critical role of BChE, LOX and α-glucosidase in neurodegeneration, the selected compounds were also screened against these enzymes. The IC50 values of 3a against AChE and BChE found to be 12.53 and 352.42 μM, respectively. Moderate to slight inhibitions of 45.26 % and 28.68 % were presented by 3a against LOX and α-glucosidase, respectively, at 0.5 mM. Insignificant inhibitions were observed with 3b against the four selected enzymes. Further, in vivo trial demonstrated that 3a could significantly diminish AChE levels in the mice brain as compared to the control. These findings were in agreement with the histopathological analysis of the brain tissues. The results corroborate that selected compounds could serve as a potential lead for further development and optimization as AChE inhibitors to achieve cost-effective anti-Alzheimer's drugs.
  9. Yavarzadeh M, Anwar F, Saadi S, Saari N
    Enzyme Microb Technol, 2023 Sep;169:110282.
    PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282
    Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
  10. Ullah S, Khalid R, Rehman MF, Irfan MI, Abbas A, Alhoshani A, et al.
    Front Chem, 2023;11:1202252.
    PMID: 37324561 DOI: 10.3389/fchem.2023.1202252
    The green synthesis of nanomaterials is of utmost interest as it offers an eco-friendly approach over chemical synthetic routes. However, the reported biosynthesis methods are often time-consuming and require heating or mechanical stirring. The current study reports a facile one-pot biosynthesis of silver nanoparticles (AgNPs) mediated by olive fruit extract (OFE) and sunlight irradiation of only 20 s. OFE acts as both a reducing and a capping agent for the formation of OFE-capped AgNPs (AgNPs@OFE). The as-synthesized NPs were systematically characterized by UV-vis spectrometry, Fourier transform infrared (FTIR) spectroscopy, scanning electrochemical microscopy with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), dynamic light scattering (DLS), and cyclic voltammetry. SEM images confirmed the successful formation of monodispersed spherical AgNPs@OFE of approximately 77 nm. FTIR spectroscopy suggested the involvement of functional groups of phytochemicals from the OFE in the capping and reduction of Ag+ to Ag. The particles revealed excellent colloidal stability as evidenced from the high zeta potential (ZP) value (-40 mV). Interestingly, using the disk diffusion method, AgNPs@OFE revealed higher inhibition efficiency against Gram-negative bacteria (Escherichia coli, Klebsiella oxytoca, and extensively drug-resistant (XDR) Salmonella typhi) than Gram-positive bacteria (Staphylococcus aureus), with Escherichia coli showing the highest inhibition zone of 27 mm. In addition, AgNPs@OFE exhibited maximum potent antioxidant scavenging potential against H2O2, followed by DPPH, O2 -, and OH- free radicals. Overall, OFE can be considered an effective source for the sustainable production of stable AgNPs with potential antioxidant and antibacterial activities for biomedical applications.
  11. Anwar F, Saleem U, Rehman AU, Ahmad B, Froeyen M, Mirza MU, et al.
    Front Pharmacol, 2021;12:607026.
    PMID: 34040515 DOI: 10.3389/fphar.2021.607026
    The presented study was designed to probe the toxicity potential of newly identified compound naphthalen-2-yl 3,5-dinitrobenzoate (SF1). Acute, subacute toxicity and teratogenicity studies were performed as per Organization of economic cooperation and development (OECD) 425, 407, and 414 test guidelines, respectively. An oral dose of 2000 mg/kg to rats for acute toxicity. Furthermore, 5, 10, 20, and 40 mg/kg doses were administered once daily for 28 days in subacute toxicity study. Teratogenicity study was performed with 40 mg/kg due to its excellent anti-Alzheimer results at this dose. SF1 induced a significant rise in Alkaline Phosphatases (ALP), bilirubin, white blood cells (WBC), and lymphocyte levels with a decrease in platelet count. Furthermore, the reduction in urea, uric acid, and aspartate transaminase (AST) levels and an increase in total protein levels were measured in subacute toxicity. SF1 increased spermatogenesis at 5 and 10 mg/kg doses. Teratogenicity study depicted no resorptions, early abortions, cleft palate, spina bifida and any skeletal abnormalities in the fetuses. Oxidative stress markers (Superoxide dismutase (SOD), Catalase (CAT), and glutathione (GSH) were increased in all the experiments, whereas the effect on melanoaldehyde Malondialdehyde (MDA) levels was variable. Histopathology further corroborated these results with no change in the architectures of selected organs. Consequently, a 2000 mg/kg dose of SF1 tends to induce minor liver dysfunction along with immunomodulation, and it is well below its LD
    50
    . Moreover, it can be safely used in pregnancy owing to its no detectable teratogenicity.
  12. Anwar F, Saleem U, Rehman AU, Ahmad B, Ismail T, Mirza MU, et al.
    Front Pharmacol, 2021;12:810704.
    PMID: 35126145 DOI: 10.3389/fphar.2021.810704
    The U.S. National Research Council (NRC) introduced new approaches to report toxicity studies. The NRC vision is to explore the toxicity pathways leading to the adverse effects in intact organisms by the exposure of the chemicals. This study examines the toxicity profiling of the naphthalene-2-yl 2-chloro-5-dinitrobenzoate (SF5) by adopting the vision of NRC that moves from traditional animal studies to the cellular pathways. Acute, subacute, and developmental toxicity studies were assayed according to the Organization for Economic Cooperation and Development (OECD) guidelines. The stress response pathway, toxicity pathway, and adverse effects outcome parameters were analyzed by using their standard protocols. The results showed that the acute toxicity study increases the liver enzyme levels. In a subacute toxicity study, alkaline phosphatase (ALP) levels were raised in both male and female animals. SF5 significantly increases the normal sperm count in the male animals corresponding to a decrease in the abnormality count. Developmental toxicity showed the normal skeletal and morphological parameters, except little hydrocephalus was observed in developmental toxicity. Doses of 20 mg/kg in males and 4 mg/kg in females showed decreased glutathione (GSH) levels in the kidney and liver. MDA levels were also increased in the kidney and liver. However, histopathological studies did not show any cellular change in these organs. No statistical difference was observed in histamine levels, testosterone, nuclear factor erythroid two-related factor-2 (Nrf2), and nuclear factor-kappa B (NF-κB), which showed no initiation of the stress response, toxicity, and adverse effect pathways. Immunomodulation was observed at low doses in subacute toxicity studies. It was concluded that SF5 did not produce abrupt and high-toxicity levels in organs and biochemical parameters. So, it is safe for further studies.
  13. Rasul R, Mahmood T, Ayub K, Joya KS, Anwar F, Saari N, et al.
    Heliyon, 2023 Nov;9(11):e21508.
    PMID: 38027972 DOI: 10.1016/j.heliyon.2023.e21508
    In the ongoing pursuit of novel and efficient NLO materials, the potential of alkali metal-doped {6}cycloparaphenylene ({6}CPP) and methylene bridged {6} cycloparaphenylene (MB{6}CPP) nanohoops as excellent NLO candidates has been explored. The geometric, electronic, linear, and nonlinear optical properties of designed systems have been investigated theoretically. All the nanohoops demonstrated thermodynamic stability, with remarkable interaction energies reaching up to -1.39 eV (-0.0511 au). Notably, the introduction of alkali metals led to a significant reduction in the HOMO-LUMO energy gaps, with values as low as 2.92 eV, compared to 6.80 eV and 6.06 eV for undoped {6}CPP and MB{6}CPP, respectively. Moreover, the alkali metal-doped nanohoops exhibited exceptional NLO response, with the K@r6-{6}CPP complex achieving the highest first hyperpolarizability of 56,221.7 × 10-30 esu. Additionally, the frequency-dependent first hyperpolarizability values are also computed at two commonly used wavelengths of 1550 nm and 1907 nm, respectively. These findings highlight the potential of designed nanohoops as promising candidates for advanced NLO materials with high-tech applications.
  14. Sallehuddin, N. A., Azizah Abdul Hamid, Salleh, S. Z., Nazia Abdul Majid, Hani Hafeeza Halim, Nurul Shazini Ramli, et al.
    MyJurnal
    In the present work, aqueous ethanolic (60% ethanol) extracts from selected Malaysian herbs
    including Murraya koenigii L. Spreng, Lawsonia inermis L., Cosmos caudatus Kunth, Piper
    betle L., and P. sarmentosum Roxb. were evaluated for their ergogenic, anti-diabetic and
    antioxidant potentials. Results showed that the analysed herbs had ergogenic property and
    were able to activate 5'AMP-activated protein kinase (AMPK) in a concentration dependant
    manner. The highest AMPK activation was exhibited by M. koenigii extract which showed no
    significant (p > 0.05) difference with green tea (positive control). For anti-diabetic potential,
    the highest α-glucosidase inhibition was exhibited by M. koenigii extract with IC50 of 43.35
    ± 7.5 µg/mL, which was higher than acarbose (positive control). The determinations of free
    radical scavenging activity and total phenolics content (TPC) indicated that the analysed herbs
    had good antioxidant activity. However, C. caudatus extract showed superior antioxidant
    activity with IC50 against free radical and TPC of 21.12 ± 3.20 µg/mL and 221.61 ± 7.49 mg
    GAE/g, respectively. RP-HPLC analysis established the presence of flavonoids in the herbs
    wherein L. inermis contained the highest flavonoid (catechin, epicatechin, naringin and rutin)
    content (668.87 mg/kg of extract). Correlations between the analyses were conducted, and
    revealed incoherent trends. Overall, M. koenigii was noted to be the most potent herb for
    enhancement of AMPK activity and α-glucosidase inhibition but exhibited moderate antioxidant activity. These results revealed that the selected herbs could be potential sources of
    natural ergogenic and anti-diabetic/antioxidant agents due to their rich profile of phenolics.
    Further analysis in vivo should be carried out to further elucidate the mechanism of actions of
    these herbs as ergogenic aids and anti-diabetic/antioxidant agents.
  15. Tabassam, Q., Mehmood, T., Anwar, F., Saari, N., Qadir, R.
    MyJurnal
    The present work studies the profiling of phenolic bioactive and in vitro biological (anticancer, antioxidant, and antimicrobial) activities of different solvent extracts from Withania
    somnifera fruit. Anticancer activity was performed using potato-disc assay and Agrobacterium tumefaciens. While antibacterial and antifungal evaluation was done by using disc diffusion method against bacterial (Staphylococcus aureus, S. epidermidis, Escherichia coli, and
    Klebsiella pneumonia) and fungal (Aspergillus flavus and Fusarium oxysporum) strains.
    Among different extraction solvents used, n-hexane extract exhibited the highest inhibition of
    tumour initiation (64%), whereas ethyl acetate (15%) was the lowest by using potato-disc
    assay. Highest total phenolic and total flavonoid contents were noted for methanolic (69.10
    GAE mg/g DW%) and n-hexane (29.45 CE mg/g DW%) extracts, respectively. For antioxidant potential, 2,2,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (IC50) and reducing power EC50 were noted to be superior (0.6 and 2.0 mg/mL, respectively) for n-hexane
    extract. All the tested extracts showed considerable antibacterial and antifungal activity with
    the highest growth inhibition zones for K. pneumoniae (31.70 mm) and A. flavus (27.09 mm)
    were shown by n-hexane extract. High Performance Liquid Chromatographic (HPLC) analysis of individual phenolics (gallic acid, 2,288.48 mg/kg) indicated the highest contents of these
    compounds in n-hexane extract, which might explain the potent biological activities of this
    extract. Our findings revealed that the bioactive present in the tested fruit had significant
    potential as anticancer, antibacterial, and antifungal agents. Further studies are needed to
    elucidate the mechanism of actions of isolated bioactive against specific diseases such as
    cancer, especially in the case of n-hexane fraction.
  16. Kamal, G.M., Anwar, F., Hussain, A.I., Sarri, N., Ashraf, M.Y.
    MyJurnal
    Citrus peel essential oils have an impressive range of food and medicinal uses. In the present study we investigated the variation in the yield and chemical composition of the essential oils isolated from fresh, ambient-, and oven-dried peels of three Citrus species namely Citrus reticulata (C. reticulata), Citrus sinensis (C. sinensis) and Citrus paradisii (C. paradisii). The hydro-distilled essential oil content from fresh-, ambient-, and oven-dried peels of C. reticulata, C. sinensis and C. paradisii ranged from 0.30-0.50, 0.24-1.07 and 0.20-0.40 g/100 g, respectively. The maximum amount of the oil was determined in oven-dried while the minimum in fresh peel samples. Using GC and GC/MS, a total of 16-27, 17-24 and 18-40 chemical constituents were identified in the peel essential oils of C. reticulate, C. sinensis and C. paradisii, respectively. The content of limonene, the most prevalent chemical constituent, detected in these essential oils, ranged from 64.1-71.1% (C. reticulata), 66.8-80.9% (C. sinensis) and 50.8-65.5% (C. paradisii). The yield and content of most of the chemical components including limonene (the principal chemical compound detected) of the tested essential oils varied significantly (p < 0.05) with respect to drying treatments and species employed.
  17. Zarei M, Ebrahimpour A, Abdul-Hamid A, Anwar F, Saari N
    Int J Mol Sci, 2012;13(7):8097-111.
    PMID: 22942692 DOI: 10.3390/ijms13078097
    The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.
  18. Shofian NM, Hamid AA, Osman A, Saari N, Anwar F, Dek MS, et al.
    Int J Mol Sci, 2011;12(7):4678-92.
    PMID: 21845104 DOI: 10.3390/ijms12074678
    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.
  19. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N
    Int J Mol Sci, 2012;13(3):3291-3340.
    PMID: 22489153 DOI: 10.3390/ijms13033291
    The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1-3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.
  20. Amin M, Anwar F, Janjua MRSA, Iqbal MA, Rashid U
    Int J Mol Sci, 2012;13(8):9923-9941.
    PMID: 22949839 DOI: 10.3390/ijms13089923
    A green synthesis route for the production of silver nanoparticles using methanol extract from Solanum xanthocarpum berry (SXE) is reported in the present investigation. Silver nanoparticles (AgNps), having a surface plasmon resonance (SPR) band centered at 406 nm, were synthesized by reacting SXE (as capping as well as reducing agent) with AgNO(3) during a 25 min process at 45 °C. The synthesized AgNps were characterized using UV-Visible spectrophotometry, powdered X-ray diffraction, and transmission electron microscopy (TEM). The results showed that the time of reaction, temperature and volume ratio of SXE to AgNO(3) could accelerate the reduction rate of Ag(+) and affect the AgNps size and shape. The nanoparticles were found to be about 10 nm in size, mono-dispersed in nature, and spherical in shape. In vitro anti-Helicobacter pylori activity of synthesized AgNps was tested against 34 clinical isolates and two reference strains of Helicobacter pylori by the agar dilution method and compared with AgNO(3) and four standard drugs, namely amoxicillin (AMX), clarithromycin (CLA), metronidazole (MNZ) and tetracycline (TET), being used in anti-H. pylori therapy. Typical AgNps sample (S1) effectively inhibited the growth of H. pylori, indicating a stronger anti-H. pylori activity than that of AgNO(3) or MNZ, being almost equally potent to TET and less potent than AMX and CLA. AgNps under study were found to be equally efficient against the antibiotic-resistant and antibiotic-susceptible strains of H. pylori. Besides, in the H. pylori urease inhibitory assay, S1 also exhibited a significant inhibition. Lineweaver-Burk plots revealed that the mechanism of inhibition was noncompetitive.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links