Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Challabi AJH, Chieng BW, Ibrahim NA, Ariffin H, Zainuddin N
    Polymers (Basel), 2019 Mar 13;11(3).
    PMID: 30960466 DOI: 10.3390/polym11030482
    The effectiveness of superheated steam (SHS) as an alternative, eco-friendly treatment method to modify the surface of pineapple leaf fiber (PALF) for biocomposite applications was investigated. The aim of this treatment was to improve the interfacial adhesion between the fiber and the polymer. The treatment was carried out in an SHS oven for different temperatures (190⁻230 °C) and times (30⁻120 min). Biocomposites fabricated from SHS-treated PALFs and polylactic acid (PLA) at a weight ratio of 30:70 were prepared via melt-blending techniques. The mechanical properties, dimensional stability, scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the biocomposites were evaluated. Results showed that treatment at temperature of 220 °C for 60 min gave the optimum tensile properties compared to other treatment temperatures. The tensile, flexural, and impact properties as well as the dimensional stability of the biocomposites were enhanced by the presence of SHS-treated PALF. The SEM analysis showed improvement in the interfacial adhesion between PLA and SHS-treated PALF. XRD analysis showed an increase in the crystallinity with the addition of SHS-PALF. The results suggest that SHS can be used as an environmentally friendly treatment method for the modification of PALF in biocomposite production.
  2. Lim KY, Yasim-Anuar TAT, Sharip NS, Ujang FA, Husin H, Ariffin H, et al.
    Polymers (Basel), 2023 Mar 01;15(5).
    PMID: 36904501 DOI: 10.3390/polym15051258
    Lignin is a natural biopolymer with a complex three-dimensional network and it is rich in phenol, making it a good candidate for the production of bio-based polyphenol material. This study attempts to characterize the properties of green phenol-formaldehyde (PF) resins produced through phenol substitution by the phenolated lignin (PL) and bio-oil (BO), extracted from oil palm empty fruit bunch black liquor. Mixtures of PF with varied substitution rates of PL and BO were prepared by heating a mixture of phenol-phenol substitute with 30 wt.% NaOH and 80% formaldehyde solution at 94 °C for 15 min. After that, the temperature was reduced to 80 °C before the remaining 20% formaldehyde solution was added. The reaction was carried out by heating the mixture to 94 °C once more, holding it for 25 min, and then rapidly lowering the temperature to 60 °C, to produce the PL-PF or BO-PF resins. The modified resins were then tested for pH, viscosity, solid content, FTIR, and TGA. Results revealed that the substitution of 5% PL into PF resins is enough to improve its physical properties. The PL-PF resin production process was also deemed environmentally beneficial, as it met 7 of the 8 Green Chemistry Principle evaluation criteria.
  3. Eng CC, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM
    ScientificWorldJournal, 2014;2014:213180.
    PMID: 25254230 DOI: 10.1155/2014/213180
    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.
  4. Ahmad Farid MA, Hassan MA, Roslan AM, Ariffin H, Norrrahim MNF, Othman MR, et al.
    Environ Sci Pollut Res Int, 2021 Jun;28(22):27976-27987.
    PMID: 33527241 DOI: 10.1007/s11356-021-12585-7
    This study provides insight into the decolorization strategy for crude glycerol obtained from biodiesel production using waste cooking oil as raw material. A sequential procedure that includes physico-chemical treatment and adsorption using activated carbon from oil palm biomass was investigated. The results evidenced decolorization and enrichment of glycerol go hand in hand during the treatment, achieving >89% color removal and > 98% increase in glycerol content, turning the glycerol into a clear (colorless) solution. This is attributed to the complete removal of methanol, free fatty acids, and triglycerides, as well as 85% removal of water, and 93% removal of potassium. Properties of the resultant glycerol met the quality standard of BS 2621:1979. The economic aspects of the proposed methods are examined to fully construct a predesign budgetary estimation according to chemical engineering principles. The starting capital is proportionate to the number of physical assets to acquire where both entail a considerable cost at USD 13,200. Having the benefit of sizeable scale production, it reasonably reduces the operating cost per unit product. As productivity sets at 33 m3 per annum, the annual operating costs amount to USD 79,902 in glycerol decolorization. This is translatable to USD 5.38 per liter glycerol, which is ~69% lower compared to using commercial activated carbon.
  5. Ariffin H, Chiew EKH, Oh BLZ, Lee SHR, Lim EH, Kham SKY, et al.
    J Clin Oncol, 2023 Jul 10;41(20):3642-3651.
    PMID: 37276496 DOI: 10.1200/JCO.22.02347
    PURPOSE: To investigate whether, for children with favorable-risk B-cell precursor ALL (BCP-ALL), an anthracycline-free protocol is noninferior to a modified Berlin-Frankfurt-Muenster ALL-IC2002 protocol, which includes 120 mg/m2 of anthracyclines.

    PATIENTS AND METHODS: Three hundred sixty-nine children with favorable-risk BCP-ALL (age 1-9 years, no extramedullary disease, and no high-risk genetics) who cleared minimal residual disease (≤0.01%) at the end of remission induction were enrolled into Ma-Spore (MS) ALL trials. One hundred sixty-seven standard-risk (SR) patients (34% of Malaysia-Singapore ALL 2003 study [MS2003]) were treated with the MS2003-SR protocol and received 120 mg/m2 of anthracyclines during delayed intensification while 202 patients (42% of MS2010) received an anthracycline-free successor protocol. The primary outcome was a noninferiority margin of 1.15 in 6-year event-free survival (EFS) between the MS2003-SR and MS2010-SR cohorts.

    RESULTS: The 6-year EFS of MS2003-SR and MS2010-SR (anthracycline-free) cohorts was 95.2% ± 1.7% and 96.5% ± 1.5%, respectively (P = .46). The corresponding 6-year overall survival was 97.6% and 99.0% ± 0.7% (P = .81), respectively. The cumulative incidence of relapse was 3.6% and 2.6%, respectively (P = .42). After adjustment for race, sex, age, presenting WBC, day 8 prednisolone response, and favorable genetic subgroups, the hazard ratio for MS2010-SR EFS was 0.98 (95% CI, 0.84 to 1.14; P = .79), confirming noninferiority. Compared with MS2003-SR, MS2010-SR had significantly lower episodes of bacteremia (30% v 45.6%; P = .04) and intensive care unit admissions (1.5% v 9.5%; P = .004).

    CONCLUSION: In comparison with MS2003-SR, the anthracycline-free MS2010-SR protocol is not inferior and was less toxic as treatment for favorable-risk childhood BCP-ALL.

  6. Lu Y, Kham SK, Ariffin H, Oei AM, Lin HP, Tan AM, et al.
    Br. J. Cancer, 2014 Mar 18;110(6):1673-80.
    PMID: 24434428 DOI: 10.1038/bjc.2014.7
    Host germline variations and their potential prognostic importance is an emerging area of interest in paediatric ALL.
  7. Ariffin H, Chen SP, Kwok CS, Quah TC, Lin HP, Yeoh AE
    J Pediatr Hematol Oncol, 2007 Jan;29(1):27-31.
    PMID: 17230064
    Childhood acute lymphoblastic leukemia (ALL) is clinically heterogeneous with prognostically and biologically distinct subtypes. Although racial differences in frequency of different types of childhood ALL have been reported, many are confounded by selected or limited population samples. The Malaysia-Singapore (MA-SPORE) Leukemia Study Group provided a unique platform for the study of the frequency of major subgroups of childhood ALL in a large cohort of unselected multiethnic Asian children. Screening for the prognostically important chromosome abnormalities (TEL-AML1, BCR-ABL, E2A-PBX1, and MLL) using multiplex reverse-transcription polymerase chain reaction was performed on 299 consecutive patients with ALL at 3 study centers (236 de novo, 63 at relapse), with the ethnic composition predominantly Chinese (51.8%) and Malay (34.8%). Reverse-transcription polymerase chain reaction was successful in 278 (93%) of cases screened. The commonest fusion transcript was TEL-AML1 (19.1%) followed by BCR-ABL (7.8%), MLL rearrangements (4.2%), and E2A-PBX1 (3.1%). Chinese have a significantly lower frequency of TEL-AML1 (13.3% in de novo patients) compared with Malays (22.2%) and Indians (21.7%) (P=0.04). Malays have a lower frequency of T-ALL (6.2%) compared with the Chinese and Indians (9.8%). Both Malays (7.4%) and Chinese (5.0%) have significantly higher frequency of BCR-ABL compared with the Indian population (P<0.05) despite a similar median age at presentation. Our study suggests that there are indeed significant and important racial differences in the frequency of subtypes of childhood ALL. Comprehensive subgrouping of childhood ALL may reveal interesting population frequency differences of the various subtypes, their risk factors and hopefully, its etiology.
  8. Jiang N, Wang L, Xiang X, Li Z, Chiew EKH, Koo YM, et al.
    Br J Clin Pharmacol, 2021 Apr;87(4):1990-1999.
    PMID: 33037681 DOI: 10.1111/bcp.14596
    AIMS: Vincristine (VCR) is a key drug in the successful multidrug chemotherapy for childhood acute lymphoblastic leukaemia (ALL). However, it remains unclear how VCR pharmacokinetics affects its antileukaemic efficacy. The objective of this study is to explore the VCR pharmacokinetic parameters and intracellular VCR levels in an up-front window of Ma-Spore ALL 2010 (MS2010) study.

    METHODS: We randomised 429 children with newly diagnosed ALL to 15-minute vs 3-hour infusion for the first dose of VCR to study if prolonging the first dose of VCR infusion improved response. In a subgroup of 115 B-ALL and 20 T-ALL patients, we performed VCR plasma (n = 135 patients) and intracellular (n = 66 patients) pharmacokinetic studies. The correlations between pharmacokinetic parameters and intracellular VCR levels with early treatment response, final outcome and ABCB1 genotypes were analysed.

    RESULTS: There was no significant difference between 15-minute and 3-hour infusion schedules in median Day 8 peripheral or bone marrow blast response. Plasma VCR pharmacokinetic parameters did not predict outcome. However, in B-ALL, Day 33 minimal residual disease (MRD) negative patients and patients in continuous complete remission had significantly higher median intracellular VCR24h levels (P = .03 and P = .04, respectively). The median VCR24h intracellular levels were similar among the common genetic subtypes of ALL (P = .4). Patients homozygous for wild-type ABCB1 2677GG had significantly higher median intracellular VCR24h (P = .04) than 2677TT.

    CONCLUSION: We showed that in childhood B-ALL, the intracellular VCR24h levels in lymphoblasts affected treatment outcomes. The intracellular VCR24h level was independent of leukaemia subtype but dependent on host ABCB1 G2677T genotype.

  9. Li Z, Jiang N, Lim EH, Chin WHN, Lu Y, Chiew KH, et al.
    Leukemia, 2020 09;34(9):2418-2429.
    PMID: 32099036 DOI: 10.1038/s41375-020-0774-4
    Identifying patient-specific clonal IGH/TCR junctional sequences is critical for minimal residual disease (MRD) monitoring. Conventionally these junctional sequences are identified using laborious Sanger sequencing of excised heteroduplex bands. We found that the IGH is highly expressed in our diagnostic B-cell acute lymphoblastic leukemia (B-ALL) samples using RNA-Seq. Therefore, we used RNA-Seq to identify IGH disease clone sequences in 258 childhood B-ALL samples for MRD monitoring. The amount of background IGH rearrangements uncovered by RNA-Seq followed the Zipf's law with IGH disease clones easily identified as outliers. Four hundred and ninety-seven IGH disease clones (median 2, range 0-7 clones/patient) are identified in 90.3% of patients. High hyperdiploid patients have the most IGH disease clones (median 3) while DUX4 subtype has the least (median 1) due to the rearrangements involving the IGH locus. In all, 90.8% of IGH disease clones found by Sanger sequencing are also identified by RNA-Seq. In addition, RNA-Seq identified 43% more IGH disease clones. In 69 patients lacking sensitive IGH targets, targeted NGS IGH MRD showed high correlation (R = 0.93; P = 1.3 × 10-14), better relapse prediction than conventional RQ-PCR MRD using non-IGH targets. In conclusion, RNA-Seq can identify patient-specific clonal IGH junctional sequences for MRD monitoring, adding to its usefulness for molecular diagnosis in childhood B-ALL.
  10. Li Z, Lee SHR, Chin WHN, Lu Y, Jiang N, Lim EH, et al.
    Blood Adv, 2021 12 14;5(23):5226-5238.
    PMID: 34547766 DOI: 10.1182/bloodadvances.2021004895
    Among the recently described subtypes in childhood B-lymphoblastic leukemia (B-ALL) were DUX4- and PAX5-altered (PAX5alt). By using whole transcriptome RNA sequencing in 377 children with B-ALL from the Malaysia-Singapore ALL 2003 (MS2003) and Malaysia-Singapore ALL 2010 (MS2010) studies, we found that, after hyperdiploid and ETV6-RUNX1, the third and fourth most common subtypes were DUX4 (n = 51; 14%) and PAX5alt (n = 36; 10%). DUX4 also formed the largest genetic subtype among patients with poor day-33 minimal residual disease (MRD; n = 12 of 44). But despite the poor MRD, outcome of DUX4 B-ALL was excellent (5-year cumulative risk of relapse [CIR], 8.9%; 95% confidence interval [CI], 2.8%-19.5% and 5-year overall survival, 97.8%; 95% CI, 85.3%-99.7%). In MS2003, 21% of patients with DUX4 B-ALL had poor peripheral blood response to prednisolone at day 8, higher than other subtypes (8%; P = .03). In MS2010, with vincristine at day 1, no day-8 poor peripheral blood response was observed in the DUX4 subtype (P = .03). The PAX5alt group had an intermediate risk of relapse (5-year CIR, 18.1%) but when IKZF1 was not deleted, outcome was excellent with no relapse among 23 patients. Compared with MS2003, outcome of PAX5alt B-ALL with IKZF1 codeletion was improved by treatment intensification in MS2010 (5-year CIR, 80.0% vs 0%; P = .05). In conclusion, despite its poor initial response, DUX4 B-ALL had a favorable overall outcome, and the prognosis of PAX5alt was strongly dependent on IKZF1 codeletion.
  11. Ariffin H, Chen SP, Wong HL, Yeoh A
    Singapore Med J, 2003 Oct;44(10):517-20.
    PMID: 15024455
    In childhood acute lymphoblastic leukaemia (ALL), cytogenetics play an important role in diagnosis, allocation of treatment and prognosis. Conventional cytogenetic analysis, involving mainly karyotyping in our experience, has not been successful in a large proportion of cases due to inadequate metaphase spreads and poor chromosome morphology. Our aim is to develop a highly sensitive and specific method to screen simultaneously for the four most frequent fusion transcripts resulting from specific chromosomal translocations, namely, both the CML- and ALLtype BCR-ABL transcripts of t(9;22), E2A-PBX1 transcript of t(1;19), the MLL-AF4 transcript of t(4;11) and TEL-AML1 (also termed ETV6-CBFA2) of the cryptic t(12;21). A multiplex reverse transcription polymerase chain reaction protocol (RT-PCR) was developed and tested out on archival bone marrow samples and leukaemia cell lines. In all samples with a known translocation detected by cytogenetic techniques, the same translocation was identified by the multiplex-PCR assay. Multiplex RT-PCR assay is an effective, sensitive, accurate and cost-effective diagnostic tool which can improve our ability to accurately and rapidly risk-stratify patients with childhood ALL.
  12. Moriyama T, Yang YL, Nishii R, Ariffin H, Liu C, Lin TN, et al.
    Blood, 2017 09 07;130(10):1209-1212.
    PMID: 28659275 DOI: 10.1182/blood-2017-05-782383
    Prolonged exposure to thiopurines (eg, mercaptopurine [MP]) is essential for curative therapy in acute lymphoblastic leukemia (ALL), but is also associated with frequent dose-limiting hematopoietic toxicities, which is partly explained by inherited genetic polymorphisms in drug metabolizing enzymes (eg, TPMT). Recently, our group and others identified germ line genetic variants in NUDT15 as another major cause of thiopurine-related myelosuppression, particularly in Asian and Hispanic people. In this article, we describe 3 novel NUDT15 coding variants (p.R34T, p.K35E, and p.G17_V18del) in 5 children with ALL enrolled in frontline protocols in Singapore, Taiwan, and at St. Jude Children's Research Hospital. Patients carrying these variants experienced significant toxicity and reduced tolerance to MP across treatment protocols. Functionally, all 3 variants led to partial to complete loss of NUDT15 nucleotide diphosphatase activity and negatively influenced protein stability. In particular, the p.G17_V18del variant protein showed extremely low thermostability and was completely void of catalytic activity, thus likely to confer a high risk of thiopurine intolerance. This in-frame deletion was only seen in African and European patients, and is the first NUDT15 risk variant identified in non-Asian, non-Hispanic populations. In conclusion, we discovered 3 novel loss-of-function variants in NUDT15 associated with MP toxicity, enabling more comprehensive pharmacogenetics-based thiopurine dose adjustments across diverse populations.
  13. Qian M, Zhang H, Kham SK, Liu S, Jiang C, Zhao X, et al.
    Genome Res, 2017 02;27(2):185-195.
    PMID: 27903646 DOI: 10.1101/gr.209163.116
    Chromosomal translocations are a genomic hallmark of many hematologic malignancies. Often as initiating events, these structural abnormalities result in fusion proteins involving transcription factors important for hematopoietic differentiation and/or signaling molecules regulating cell proliferation and cell cycle. In contrast, epigenetic regulator genes are more frequently targeted by somatic sequence mutations, possibly as secondary events to further potentiate leukemogenesis. Through comprehensive whole-transcriptome sequencing of 231 children with acute lymphoblastic leukemia (ALL), we identified 58 putative functional and predominant fusion genes in 54.1% of patients (n = 125), 31 of which have not been reported previously. In particular, we described a distinct ALL subtype with a characteristic gene expression signature predominantly driven by chromosomal rearrangements of the ZNF384 gene with histone acetyltransferases EP300 and CREBBP ZNF384-rearranged ALL showed significant up-regulation of CLCF1 and BTLA expression, and ZNF384 fusion proteins consistently showed higher activity to promote transcription of these target genes relative to wild-type ZNF384 in vitro. Ectopic expression of EP300-ZNF384 and CREBBP-ZNF384 fusion altered differentiation of mouse hematopoietic stem and progenitor cells and also potentiated oncogenic transformation in vitro. EP300- and CREBBP-ZNF384 fusions resulted in loss of histone lysine acetyltransferase activity in a dominant-negative fashion, with concomitant global reduction of histone acetylation and increased sensitivity of leukemia cells to histone deacetylase inhibitors. In conclusion, our results indicate that gene fusion is a common class of genomic abnormalities in childhood ALL and that recurrent translocations involving EP300 and CREBBP may cause epigenetic deregulation with potential for therapeutic targeting.
  14. Lee SHR, Antillon-Klussmann F, Pei D, Yang W, Roberts KG, Li Z, et al.
    JAMA Oncol, 2022 Mar 01;8(3):354-363.
    PMID: 35084434 DOI: 10.1001/jamaoncol.2021.6826
    IMPORTANCE: Racial and ethnic disparities persist in the incidence and treatment outcomes of childhood acute lymphoblastic leukemia (ALL). However, there is a paucity of data describing the genetic basis of these disparities, especially in association with modern ALL molecular taxonomy and in the context of contemporary treatment regimens.

    OBJECTIVE: To evaluate the association of genetic ancestry with childhood ALL molecular subtypes and outcomes of modern ALL therapy.

    DESIGN, SETTING, AND PARTICIPANTS: This multinational, multicenter genetic association study was conducted from March 1, 2000, to November 20, 2020, among 2428 children and adolescents with ALL enrolled in frontline trials from the United States, South East Asia (Singapore and Malaysia), and Latin America (Guatemala), representing diverse populations of European, African, Native American, East Asian, and South Asian descent. Statistical analysis was conducted from February 3, 2020, to April 19, 2021.

    MAIN OUTCOMES AND MEASURES: Molecular subtypes of ALL and genetic ancestry were comprehensively characterized by performing RNA sequencing. Associations of genetic ancestries with ALL molecular subtypes and treatment outcomes were then evaluated.

    RESULTS: Among the participants in the study, 1340 of 2318 (57.8%) were male, and the mean (SD) age was 7.8 (5.3) years. Of 21 ALL subtypes identified, 8 were associated with ancestry. East Asian ancestry was positively associated with the frequency of somatic DUX4 (odds ratio [OR], 1.30 [95% CI, 1.16-1.45]; P 

  15. Yeoh AE, Li Z, Dong D, Lu Y, Jiang N, Trka J, et al.
    Br J Haematol, 2018 Jun;181(5):653-663.
    PMID: 29808917 DOI: 10.1111/bjh.15252
    Accurate risk assignment in childhood acute lymphoblastic leukaemia is essential to avoid under- or over-treatment. We hypothesized that time-series gene expression profiles (GEPs) of bone marrow samples during remission-induction therapy can measure the response and be used for relapse prediction. We computed the time-series changes from diagnosis to Day 8 of remission-induction, termed Effective Response Metric (ERM-D8) and tested its ability to predict relapse against contemporary risk assignment methods, including National Cancer Institutes (NCI) criteria, genetics and minimal residual disease (MRD). ERM-D8 was trained on a set of 131 patients and validated on an independent set of 79 patients. In the independent blinded test set, unfavourable ERM-D8 patients had >3-fold increased risk of relapse compared to favourable ERM-D8 (5-year cumulative incidence of relapse 38·1% vs. 10·6%; P = 2·5 × 10-3 ). ERM-D8 remained predictive of relapse [P = 0·05; Hazard ratio 4·09, 95% confidence interval (CI) 1·03-16·23] after adjusting for NCI criteria, genetics, Day 8 peripheral response and Day 33 MRD. ERM-D8 improved risk stratification in favourable genetics subgroups (P = 0·01) and Day 33 MRD positive patients (P = 1·7 × 10-3 ). We conclude that our novel metric - ERM-D8 - based on time-series GEP after 8 days of remission-induction therapy can independently predict relapse even after adjusting for NCI risk, genetics, Day 8 peripheral blood response and MRD.
  16. Lee DS, Yoon SY, Looi LM, Kang P, Kang IN, Sivanandan K, et al.
    Breast Cancer Res, 2012;14(2):R66.
    PMID: 22507745
    Germline TP53 mutations cause an increased risk to early-onset breast cancer in Li-Fraumeni syndrome (LFS) families and the majority of carriers identified through breast cancer cohorts have LFS or Li-Fraumeni-like (LFL) features. However, in Asia and in many low resource settings, it is challenging to obtain accurate family history and we, therefore, sought to determine whether the presence of early-onset breast cancer is an appropriate selection criteria for germline TP53 testing.
  17. Maail CM, Ariffin H, Hassan MA, Shah UK, Shirai Y
    Biomed Res Int, 2014;2014:465270.
    PMID: 25057489 DOI: 10.1155/2014/465270
    Oil palm frond (OPF) juice is a potential industrial fermentation substrate as it has high sugars content and the OPF are readily available daily. However, maximum sugars yield and storage stability of the OPF juice are yet to be determined. This study was conducted to determine the effect of physical pretreatment and storage duration of OPF petiole on sugars yield. Storage stability of OPF juice at different storing conditions was also investigated. It was found that OPF petiole squeezed by hydraulic pressing machine gave the highest sugars recovery at almost 40 g/kg, accounting for a recovery yield of 88%. Storage of OPF petiole up to 72 hrs prior to squeezing reduced the free sugars by 11 g/kg. Concentrated OPF juice with 95% water removal had the best storage stability at both 4 and 30°C, when it was stored for 10 days. Moreover, concentrated OPF syrup prepared by thermal processing did not give any Maillard effect on microbial growth. Based on our results, OPF juice meets all the criteria as a good fermentation substrate as it is renewable, consistently available, and easy to be obtained, it does not inhibit microbial growth and product formation, and it contains no impurities.
  18. Zakaria MR, Ariffin H, Abd-Aziz S, Hassan MA, Shirai Y
    Biomed Res Int, 2013;2013:237806.
    PMID: 24106698 DOI: 10.1155/2013/237806
    This study presents the effect of carbon to nitrogen ratio (C/N) (mol/mol) on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA) as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol) 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (M n ) of P(3HB-co-3HV) copolymer reached the highest at 838 × 10(3) Da with polydispersity index (PDI) value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4). Tensile strength and Young's modulus of the copolymer containing 6-8 mol% 3HV were in the ranges of 13-14.4 MPa and 0.26-0.34 GPa, respectively, comparable to those of polyethylene (PE). Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links