Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    Public Health, 2016 Feb;131:103-11.
    PMID: 26715317 DOI: 10.1016/j.puhe.2015.11.006
    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk.
  2. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    J Epidemiol Glob Health, 2015 Dec;5(4):297-310.
    PMID: 25944153 DOI: 10.1016/j.jegh.2015.04.003
    Malaysia has abundant sources of drinking water from river and groundwater. However, rapid developments have deteriorated quality of drinking water sources in Malaysia. Heavy metal studies in terms of drinking water, applications of health risk assessment and bio-monitoring in Malaysia were reviewed from 2003 to 2013. Studies on heavy metal in drinking water showed the levels are under the permissible limits as suggested by World Health Organization and Malaysian Ministry of Health. Future studies on the applications of health risk assessment are crucial in order to understand the risk of heavy metal exposure through drinking water to Malaysian population. Among the biomarkers that have been reviewed, toenail is the most useful tool to evaluate body burden of heavy metal. Toenails are easy to collect, store, transport and analysed. This review will give a clear guidance for future studies of Malaysian drinking water. In this way, it will help risk managers to minimize the exposure at optimum level as well as the government to formulate policies in safe guarding the population.
  3. Aris AZ, Shamsuddin AS, Praveena SM
    Environ Int, 2014 Aug;69:104-19.
    PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011
    17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
  4. Azlan NSM, Wee SY, Ismail NAH, Nasir HM, Aris AZ
    Environ Toxicol Chem, 2020 10;39(10):1908-1917.
    PMID: 32621623 DOI: 10.1002/etc.4813
    The organophosphorus pesticides (OPPs) commonly used in agricultural practices can pose a risk of potential exposure to humans via food consumption. We describe an analytical method for solid-phase extraction coupled with high-performance liquid chromatography-diode array detector (SPE-HPLC-DAD) for the detection of OPPs (quinalphos, diazinon, and chlorpyrifos) in rice grains. The isolation of targeted residues was initiated with double extraction before SPE-HPLC-DAD, crucially reducing matrix interferences and detecting a wide range of multiple residues in rice grains. Coefficients of 0.9968 to 0.9991 showed a strong linearity, with limits of detection and quantification ranging from 0.36 to 0.68 µg/kg and from 1.20 to 2.28 µg/kg, respectively. High recoveries (80.4-110.3%) were observed at 3 spiking levels (50, 100, and 200 µg/kg), indicating good accuracy. The relative standard deviations of all residues (0.19-8.66%) validated the method precision. Sample analysis of 10 rice grain types (n = 30) available in the Asian market revealed that quinalphos, diazinon, and chlorpyrifos at concentrations of 1.08, 1.11, and 1.79 µg/kg, respectively, remained far below the maximum residue limits (0.01-0.5 mg/kg). However, regular monitoring is necessary to confirm that multiresidue occurrence remains below permissible limits while controlling pests. Environ Toxicol Chem 2020;39:1908-1917. © 2020 SETAC.
  5. Dominic JA, Aris AZ, Sulaiman WN, Tahir WZ
    Environ Monit Assess, 2016 Mar;188(3):191.
    PMID: 26914327 DOI: 10.1007/s10661-016-5192-8
    The approach of this paper is to predict the sand mass distribution in an urban stormwater holding pond at the Stormwater Management And Road Tunnel (SMART) Control Centre, Malaysia, using simulated depth average floodwater velocity diverted into the holding during storm events. Discriminant analysis (DA) was applied to derive the classification function to spatially distinguish areas of relatively high and low sand mass compositions based on the simulated water velocity variations at corresponding locations of gravimetrically measured sand mass composition of surface sediment samples. Three inflow parameter values, 16, 40 and 80 m(3) s(-1), representing diverted floodwater discharge for three storm event conditions were fixed as input parameters of the hydrodynamic model. The sand (grain size > 0.063 mm) mass composition of the surface sediment measured at 29 sampling locations ranges from 3.7 to 45.5%. The sampling locations of the surface sediment were spatially clustered into two groups based on the sand mass composition. The sand mass composition of group 1 is relatively lower (3.69 to 12.20%) compared to group 2 (16.90 to 45.55%). Two Fisher's linear discriminant functions, F 1 and F 2, were generated to predict areas; both consist of relatively higher and lower sand mass compositions based on the relationship between the simulated flow velocity and the measured surface sand composition at corresponding sampling locations. F 1 = -9.405 + 4232.119 × A - 1795.805 × B + 281.224 × C, and F 2 = -2.842 + 2725.137 × A - 1307.688 × B + 231.353 × C. A, B and C represent the simulated flow velocity generated by inflow parameter values of 16, 40 and 80 m(3) s(-1), respectively. The model correctly predicts 88.9 and 100.0% of sampling locations consisting of relatively high and low sand mass percentages, respectively, with the cross-validated classification showing that, overall, 82.8% are correctly classified. The model predicts that 31.4% of the model domain areas consist of high-sand mass composition areas and the remaining 68.6% comprise low-sand mass composition areas.
  6. Fang TY, Praveena SM, deBurbure C, Aris AZ, Ismail SN, Rasdi I
    Chemosphere, 2016 Dec;165:358-368.
    PMID: 27665296 DOI: 10.1016/j.chemosphere.2016.09.051
    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples.
  7. Gazzaz NM, Yusoff MK, Juahir H, Ramli MF, Aris AZ
    Water Environ Res, 2013 Aug;85(8):751-66.
    PMID: 24003601
    This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank correlation analysis, multiple linear regression, and artificial neural network modeling. Correlation analysis indicated that from a temporal perspective, the WQI, temperature, and zinc, arsenic, chemical oxygen demand, sodium, and dissolved oxygen concentrations increased, whereas turbidity and suspended solids, total solids, nitrate nitrogen (NO3-N), and biochemical oxygen demand concentrations decreased with year. From a spatial perspective, an increase with distance of the sampling station from the headwater was exhibited by 10 WQVs: magnesium, calcium, dissolved solids, electrical conductivity, temperature, NO3-N, arsenic, chloride, potassium, and sodium. At the same time, the WQI; Escherichia coli bacteria counts; and suspended solids, total solids, and dissolved oxygen concentrations decreased with distance from the headwater. Lastly, regression and artificial neural network models with high prediction powers (81.2% and 91.4%, respectively) were developed and are discussed.
  8. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, Juahir H
    Mar Pollut Bull, 2012 Apr;64(4):688-98.
    PMID: 22330076 DOI: 10.1016/j.marpolbul.2012.01.032
    This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.
  9. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF
    Mar Pollut Bull, 2012 Nov;64(11):2409-20.
    PMID: 22925610 DOI: 10.1016/j.marpolbul.2012.08.005
    This article describes design and application of feed-forward, fully-connected, three-layer perceptron neural network model for computing the water quality index (WQI)(1) for Kinta River (Malaysia). The modeling efforts showed that the optimal network architecture was 23-34-1 and that the best WQI predictions were associated with the quick propagation (QP) training algorithm; a learning rate of 0.06; and a QP coefficient of 1.75. The WQI predictions of this model had significant, positive, very high correlation (r=0.977, p<0.01) with the measured WQI values, implying that the model predictions explain around 95.4% of the variation in the measured WQI values. The approach presented in this article offers useful and powerful alternative to WQI computation and prediction, especially in the case of WQI calculation methods which involve lengthy computations and use of various sub-index formulae for each value, or range of values, of the constituent water quality variables.
  10. Gazzaz NM, Yusoff MK, Ramli MF, Juahir H, Aris AZ
    Water Environ Res, 2015 Feb;87(2):99-112.
    PMID: 25790513
    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
  11. Guo M, Xu J, Long X, Liu W, Aris AZ, Yang D, et al.
    Ecotoxicol Environ Saf, 2024 Mar 01;272:116110.
    PMID: 38364763 DOI: 10.1016/j.ecoenv.2024.116110
    OBJECTIVE: We here explored whether perinatal nonylphenol (NP) exposure causes myocardial fibrosis (MF) during adulthood in offspring rats and determined the role of the TGF-β1/LIMK1 signaling pathway in NP-induced fibrosis in cardiac fibroblasts (CFs).

    METHODS AND RESULTS: Histopathology revealed increased collagen deposition and altered fiber arrangement in the NP and isoproterenol hydrochloride (ISO) groups compared with the blank group. Systolic and diastolic functions were impaired. Western blotting and qRT-PCR demonstrated that the expression of central myofibrosis-related proteins (collagens Ι and ΙΙΙ, MMP2, MMP9, TGF-β1, α-SMA, IL-1β, and TGF-β1) and genes (Collagen Ι, Collagen ΙΙΙ, TGF-β1, and α-SMA mRNA) was upregulated in the NP and ISO groups compared with the blank group. The mRNA-seq analysis indicated differential expression of TGF-β1 signaling pathway-associated genes and proteins. Fibrosis-related protein and gene expression increased in the CFs stimulated with the recombinant human TGF-β1 and NP, which was consistent with the results of animal experiments. According to the immunofluorescence analysis and western blotting, NP exposure activated the TGF-β1/LIMK1 signaling pathway whose action mechanism in NP-induced CFs was further validated using the LIMK1 inhibitor (BMS-5). The inhibitor modulated the TGF-β1/LIMK1 signaling pathway and suppressed the NP-induced increase in fibrosis-related protein expression in the CFs. Thus, the aforementioned pathway is involved in NP-induced fibrosis.

    CONCLUSION: We here provide the first evidence that perinatal NP exposure causes myocardial fibrosis in growing male rat pups and reveal the molecular mechanism and functional role of the TGF-β1/LIMK1 signaling pathway in this process.

  12. Haris H, Aris AZ, Mokhtar MB
    Chemosphere, 2017 Jan;166:323-333.
    PMID: 27710880 DOI: 10.1016/j.chemosphere.2016.09.045
    Total mercury (THg) and methylmercury (MeHg) concentrations were determined from sediment samples collected from thirty sampling stations in Port Klang, Malaysia. Three stations had THg concentrations exceeding the threshold effect level of the Florida Department of Environmental Protection and the Canadian interim sediment quality guidelines. THg and MeHg concentrations were found to be concentrated in the Lumut Strait where inputs from the two most urbanized rivers in the state converged (i.e. Klang River and Langat River). This suggests that Hg in the study area likely originated from the catchments of these rivers. MeHg made up 0.06-94.96% of the sediment's THg. There is significant positive correlation (p 
  13. Haris H, Looi LJ, Aris AZ, Mokhtar NF, Ayob NAA, Yusoff FM, et al.
    Environ Geochem Health, 2017 Dec;39(6):1259-1271.
    PMID: 28484873 DOI: 10.1007/s10653-017-9971-0
    The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.
  14. Haris H, Aris AZ, Mokhtar MB, Looi LJ
    Chemosphere, 2020 Apr;245:125590.
    PMID: 31874324 DOI: 10.1016/j.chemosphere.2019.125590
    This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p 
  15. Isa NM, Aris AZ, Sulaiman WN
    Sci Total Environ, 2012 Nov 1;438:414-25.
    PMID: 23022725 DOI: 10.1016/j.scitotenv.2012.08.069
    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; p<0.01), which can be defined as the effect of salinization. The mechanisms involved in groundwater chemistry changes were ion exchange and mineralization. These processes can be demonstrated using Piper's diagram in which the water type has shifted into a Na-HCO(3) water type from a Ca-HCO(3) water type. Saturation indices have been calculated in order to determine the saturation condition related to dissolution or the precipitation state of the aquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; p<0.01). This indicates that the major mineral component in Kapas Island is Ca ion, which contributes to the groundwater chemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer.
  16. Ismail FA, Aris AZ, Latif PA
    Environ Sci Pollut Res Int, 2014 Jan;21(1):344-54.
    PMID: 23771443 DOI: 10.1007/s11356-013-1906-4
    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) 
  17. Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ
    Environ Pollut, 2019 Jun;249:1019-1028.
    PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089
    Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
  18. Ismail NAH, Aris AZ, Wee SY, Nasir HM, Razak MR, Kamarulzaman NH, et al.
    Food Chem, 2021 May 30;345:128806.
    PMID: 33352402 DOI: 10.1016/j.foodchem.2020.128806
    The presence and distribution of endocrine-disrupting chemicals (EDCs) in the mariculture fish from Pulau Kukup, Johor of Malaysia have been studied along with the impact on human health. Six different species of mariculture fish were collected, due to their high consumption in the Asian region-especially Malaysia, to assess their levels of EDCs. The highest concentration of EDCs detected in the muscle was dexamethasone (2.37-15.84 ng/g) and (0.77-13.41 ng/g), in the liver was dexamethasone (<2.54-43.56 ng/g) and progesterone (2.23-9.78 ng/g), and in the reproductive organ are dexamethasone (<2.54-37.23 ng/g) and caffeine (0.21-18.92 ng/g). The human health risk assessment in the current study suggested that there is no potential risk to the consumer because the hazard index was below 1 (HI 
  19. Ismail NAH, Wee SY, Haron DEM, Kamarulzaman NH, Aris AZ
    Mar Pollut Bull, 2020 Jan;150:110735.
    PMID: 31784268 DOI: 10.1016/j.marpolbul.2019.110735
    Endocrine-disrupting compounds (EDCs) such as hormones, pesticides, phenolic compounds, and pharmaceuticals compounds can cause adverse effects on humans, animals, and other living organisms. One of the largest mariculture areas situated in Pulau Kukup, Johor, Malaysia, is actively involved in exporting marine fish to other countries worldwide. This paper aims to provide baseline data on the level of EDC pollutants found in mariculture sediments in Malaysia since no reports have investigated this issue. Calculated samples recovered are between 50.39 and 129.10% at 100 ng/g spiking level. The highest concentration in the sediment samples was bisphenol A (0.072-0.389 ng/g dry weight) followed by diethylstilbestrol (<0.208-0.331 ng/g dry weight) and propranolol (<0.250-0.275 ng/g dry weight). Even though the concentrations of the targeted compounds obtained were low, their effects could become more evident longer term, which raises not only environmental health concerns but the potential risk to humans.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links