Displaying publications 1 - 20 of 107 in total

Abstract:
Sort:
  1. Mustapha A, Aris AZ
    PMID: 22571534 DOI: 10.1080/10934529.2012.673305
    Multivariate statistical techniques such as hierarchical Agglomerated cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and factor analysis (FA) were applied to identify the spatial variation and pollution sources of Jakara River, Kano, Nigeria. Thirty surface water samples were collected: 23 along Getsi River and 7 along the main channel of River Jakara. Twenty-three water quality parameters, namely pH, temperature, turbidity, electrical conductivity (EC), dissolved oxygen (DO), 5-day biochemical oxygen demand (BOD(5)), Faecal coliform, total solids (TS), nitrates (NO(3)(-)), phosphates (PO(4)(3-)), cobalt (Co), iron (Fe), nickel (Ni), manganese (Mn), copper (Cu), sodium (Na), potassium (K), mercury (Hg), chromium (Cr), cadmium (Cd), lead (Pb), magnesium (Mg), and calcium(Ca) were analysed. HACA grouped the sampling points into three clusters based on the similarities of river water quality characteristics: industrial, domestic, and agricultural water pollution sources. Forward and backward DA effectively discriminated 5 and 15 water quality variables, respectively, each assigned with 100% correctness from the original 23 variables. PCA and FA were used to investigate the origin of each water quality parameter due to various land use activities, 7 principal components were obtained with 77.5% total variance, and in addition PCA identified 3 latent pollution sources to support HACA. From this study, one can conclude that the application of multivariate techniques derives meaningful information from water quality data.
  2. Praveena SM, Aris AZ
    Mar Pollut Bull, 2013 Feb 15;67(1-2):196-9.
    PMID: 23260650 DOI: 10.1016/j.marpolbul.2012.11.037
    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources.
  3. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
  4. Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:575-581.
    PMID: 28917209 DOI: 10.1016/j.chemosphere.2017.09.035
    Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQm) and worst-case (RQex) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQm = 0.17 and RQex = 0.66; 0.1 ≤ RQ  1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs.
  5. Praveena SM, Aris AZ
    Environ Sci Pollut Res Int, 2021 Dec;28(45):63829-63836.
    PMID: 33410033 DOI: 10.1007/s11356-020-11774-0
    This study examined the impacts of the Coronavirus disease 2019 (COVID-19) on the environment in the Southeast Asia region using qualitative content analysis to analyze the textual data of published studies and other online references such as the organizational reports. Besides, the materiality assessment particularly the Global Reporting Initiative was conducted by analyzing short- and long-term impacts from the stakeholders' (local and regional policymakers) perspective. The positive effects of COVID-19 lockdown and movement restriction on the regional environment identified in this study included a reduction in air pollution, improvement of air and water quality, lower noise levels, and reduced land surface temperature. In contrast, the negative effects encompassed a rise in the use of plastics and the generation of medical waste in Indonesia, Malaysia, Thailand, the Philippines, and Vietnam. Materiality assessment findings have offered insights on the need of stakeholders' importance for further to deal with huge amount of waste, inadequate waste management facilities and system, explore the effectiveness of such sustainable work and lifestyle changes, utilize real-time monitoring air quality data and future prediction responses for climate change mitigation and adaptation policies as well as consideration towards new green technologies for clean energy in each Southeast Asian country and at regional level. It is anticipated that this study will contribute towards a better understanding of the impacts of COVID-19 on environmental sustainability in the Southeast Asia region, particularly from the perspective of the stakeholders.
  6. Wee SY, Aris AZ
    Ecotoxicol Environ Saf, 2023 Nov 15;267:115663.
    PMID: 37976959 DOI: 10.1016/j.ecoenv.2023.115663
    Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that have been widely utilized in various industries since the 1940s, and have now emerged as environmental contaminants. In recent years, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been restricted and replaced with several alternatives. The high persistence, bioaccumulation, and toxicity of these substances have contributed to their emergence as environmental contaminants, and several aspects of their behavior remain largely unknown and require further investigation. The trace level of PFAS makes the development of a monitoring database challenging. Additionally, the potential health issues associated with PFAS are not yet fully understood due to ongoing research and inadequate evidence (experimental and epidemiological studies), especially with regard to the combined effects of exposure to PFAS mixtures and human health risks from drinking water consumption. This in-depth review offers unprecedented insights into the exposure pathways and toxicological impacts of PFAS, addressing critical knowledge gaps in their behaviors and health implications. It presents a comprehensive NABC-Needs, Approach, Benefits, and Challenges-analysis to guide future strategies for the sustainable monitoring and management of these pervasive environmental contaminants.
  7. Wee SY, Aris AZ
    Environ Int, 2017 09;106:207-233.
    PMID: 28552550 DOI: 10.1016/j.envint.2017.05.004
    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water.
  8. Lim WY, Aris AZ, Zakaria MP
    ScientificWorldJournal, 2012;2012:652150.
    PMID: 22919346 DOI: 10.1100/2012/652150
    This paper determines the controlling factors that influence the metals' behavior water-sediment interaction facies and distribution of elemental content ((75)As, (111)Cd, (59)Co, (52)Cr, (60)Ni, and (208)Pb) in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals' concentration varied among stations. Metal concentrations of water ranged between 0.08-24.71 μg/L for As, <0.01-0.53 μg/L for Cd, 0.06-6.22 μg/L for Co, 0.32-4.67 μg/L for Cr, 0.80-24.72 μg/L for Ni, and <0.005-6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47-30.04 mg/kg for As, 0.02-0.18 mg/kg for Cd, 0.87-4.66 mg/kg for Co, 4.31-29.04 mg/kg for Cr, 2.33-8.25 mg/kg for Ni and 5.57-55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb) were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans.
  9. Shehab ZN, Jamil NR, Aris AZ
    Sci Rep, 2020 11 23;10(1):20360.
    PMID: 33230250 DOI: 10.1038/s41598-020-77454-8
    Phase distribution of emerging organic contaminants is highly influential in their presence, fate and transport in surface water. Therefore, it is crucial to determine their state, partitioning behaviour and tendencies in water environments. In this study, Bisphenol A was investigated in both colloidal and soluble phases in water. BPA concentrations ranged between 1.13 and 5.52 ng L-1 in the soluble phase and n.d-2.06 ng L-1 in the colloidal phase, respectively. BPA was dominant in the soluble phase, however, the colloidal contribution ranged between 0 and 24% which implied that colloids can play a significant role in controlling BPA's transportation in water. Urban and industrial areas were the main sources of BPA while forest areas displayed lower levels outside the populated domains. pH levels were between 6.3 and 7.4 which might have affected BPA's solubility in water to some extent. The particle size distribution showed that the majority of the particles in river samples were smaller than 1.8 µm in diameter with a small presence of nanoparticles. Zeta potential varied between - 25 and - 18 mV, and these negative values suggested instability of particles. Furthermore, BPA was positively correlated with BOD, COD and NH3-N which might indicate that these organic compounds were released concurrently with BPA. RQ assessment showed low levels of risk towards algae and fish in the study area.
  10. Shehab ZN, Jamil NR, Aris AZ
    J Environ Manage, 2020 Nov 15;274:111141.
    PMID: 32818827 DOI: 10.1016/j.jenvman.2020.111141
    A simplified modelling approach for illustrating the fate of emerging pollutants can improve risk assessment of these chemicals. Once released into aquatic environments, these pollutants will interact with various substances including suspended particles, colloidal or nano particles, which will greatly influence their distribution and ultimate fate. Understanding these interactions in aquatic environments continues to be an important issue because of their possible risk. In this study, bisphenol A (BPA) in the water column of Bentong River, Malaysia, was investigated in both its soluble and colloidal phase. A spatially explicit hydrological model was established to illustrate the associated dispersion processes of colloidal-bound BPA. Modelling results demonstrated the significance of spatial detail in predicting hot spots or peak concentrations of colloidal-bound BPA in the sediment and water columns as well. The magnitude and setting of such spots were system based and depended mainly on flow conditions. The results highlighted the effects of colloidal particles' concentration and density on BPA's removal from the water column. It also demonstrated the tendency of colloidal particles to aggregate and the impact all these processes had on BPA's transport potential and fate in a river water. All scenarios showed that after 7.5-10 km mark BPA's concentration started to reach a steady state with very low concentrations which indicated that a downstream transport of colloidal-bound BPA was less likely due to minute BPA levels.
  11. Haris H, Aris AZ, Mokhtar MB
    Chemosphere, 2017 Jan;166:323-333.
    PMID: 27710880 DOI: 10.1016/j.chemosphere.2016.09.045
    Total mercury (THg) and methylmercury (MeHg) concentrations were determined from sediment samples collected from thirty sampling stations in Port Klang, Malaysia. Three stations had THg concentrations exceeding the threshold effect level of the Florida Department of Environmental Protection and the Canadian interim sediment quality guidelines. THg and MeHg concentrations were found to be concentrated in the Lumut Strait where inputs from the two most urbanized rivers in the state converged (i.e. Klang River and Langat River). This suggests that Hg in the study area likely originated from the catchments of these rivers. MeHg made up 0.06-94.96% of the sediment's THg. There is significant positive correlation (p 
  12. Zainuddin AH, Wee SY, Aris AZ
    Environ Geochem Health, 2020 Nov;42(11):3703-3715.
    PMID: 32488800 DOI: 10.1007/s10653-020-00604-4
    The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.
  13. Praveena SM, Kwan OW, Aris AZ
    Environ Monit Assess, 2012 Nov;184(11):6855-68.
    PMID: 22146822 DOI: 10.1007/s10661-011-2463-2
    Principal component analysis (PCA) is capable of handling large sets of data. However, lack of consistent method in data pre-treatment and its importance are the limitations in PCA applications. This study examined pre-treatments methods (log (x + 1) transformation, outlier removal, and granulometric and geochemical normalization) on dataset of Mengkabong Lagoon, Sabah, mangrove surface sediment at high and low tides. The study revealed that geochemical normalization using Al with outliers removal resulted in a better classification of the mangrove surface sediment than that outliers removal, granulometric normalization using clay and log (x + 1) transformation. PCA output using geochemical normalization with outliers removal demonstrated associations between environmental variables and tides of mangrove surface sediment, Mengkabong Lagoon, Sabah. The PCA outputs at high and low tides also provided to better interpret information about the sediment and its controlling factors in the intertidal zone. The study showed data pre-treatment method to be a useful procedure to standardize the datasets and reducing the influence of outliers.
  14. Sheikhy Narany T, Sefie A, Aris AZ
    Sci Total Environ, 2018 Jul 15;630:931-942.
    PMID: 29499548 DOI: 10.1016/j.scitotenv.2018.02.190
    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.
  15. Lim AP, Zulkeflee Z, Aris AZ
    Water Sci Technol, 2016 Oct;74(7):1577-1584.
    PMID: 27763337
    Dead calcareous skeletons (CSs) as low-cost adsorbents were studied to remove lead ions (Pb (II)) in an aqueous solution. Factors influencing the efficiency of CSs were evaluated by adsorbent size, contact time, initial concentration, dosage concentration and pH. The optimum CS size for removal of Pb (II) was 710 μm at an equilibrium time of 720 min. The best dosage of CS was 10 g/L for a 99% removal efficiency without pH adjustment. Pb (II) ions were effectively removed in the initial pH of the metal solution. CS was able to remove a high concentration (100 mg/L) of Pb (II) at a removal efficiency of 99.92% and at an adsorption capacity of 13.06 mg/g. Our results demonstrated the potential of CS as a metal adsorbent in the aqueous phase with a high-removal efficiency and distinct physical characteristics.
  16. Ismail FA, Aris AZ, Latif PA
    Environ Sci Pollut Res Int, 2014 Jan;21(1):344-54.
    PMID: 23771443 DOI: 10.1007/s11356-013-1906-4
    This work presents the structural and adsorption properties of the CaCO3(-)-rich Corbicula fluminea shell as a natural and economic adsorbent to remove Cd ions from aqueous solutions under batch studies. Experiments were conducted with different contact times, various initial concentrations, initial solution pH and serial biosorbent dosage to examine the dynamic characterization of the adsorption and its influence on Cd uptake capacity. The characterization of the C. fluminea shell using SEM/EDX revealed that the adsorbent surface is mostly impregnated by small particles of potentially calcium salts. The dominant Cd adsorption mechanism is strongly pH and concentration dependent. A maximum Cd removal efficiency of 96.20% was obtained at pH 7 while the optimum adsorbent dosage was observed as 5 g/L. The Langmuir isotherm was discovered to be more suitable to represent the experimental equilibrium isotherm results with higher correlation coefficients (R(2) > 0.98) than Freundlich (R(2) 
  17. Aris AZ, Shamsuddin AS, Praveena SM
    Environ Int, 2014 Aug;69:104-19.
    PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011
    17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
  18. Ab Razak NH, Praveena SM, Aris AZ, Hashim Z
    Public Health, 2016 Feb;131:103-11.
    PMID: 26715317 DOI: 10.1016/j.puhe.2015.11.006
    Information about the quality of drinking water, together with analysis of knowledge, attitude and practice (KAP) analysis and health risk assessment (HRA) remain limited. The aims of this study were: (1) to ascertain the level of KAP regarding heavy metal contamination of drinking water in Pasir Mas; (2) to determine the concentration of heavy metals (Al, Cr, Cu, Fe, Ni, Pb, Zn and Cd) in drinking water in Pasir Mas; and (3) to estimate the health risks (non-carcinogenic and carcinogenic) caused by heavy metal exposure through drinking water using hazard quotient and lifetime cancer risk.
  19. Looi LJ, Aris AZ, Yusoff FM, Hashim Z
    Environ Monit Assess, 2015 Jan;187(1):4099.
    PMID: 25380712 DOI: 10.1007/s10661-014-4099-5
    Sediment is a great indicator for assessing coastal mercury contamination. This work profiled the magnitude of mercury pollution in the tropical estuaries and coastal sediments of the Strait of Malacca. Mercury was extracted through the ultrasound-assisted mercury extraction method and analyzed using the flow injection mercury system. The mean concentration of mercury in the sediment samples was 61.43 ± 23.25 μg/kg, ranging from 16.55 ± 0.61 to 114.02 ± 1.54 μg/kg. Geoaccumulation index revealed that a total of 13% of sampling sites were moderately enriched with mercury. The northern part of the Strait of Malacca had the highest mean mercury (Hg) concentration (76.36 ± 27.25 μg/kg), followed by the southern (64.59 ± 16.09 μg/kg) and central (39.33 ± 12.91 μg/kg) parts. Sediment mercury concentration in the current study was lower than other regions like Japan, China, Indian, east Mediterranean, and Taiwan. When compared to the Canadian interim marine and freshwater sediment, China's soil interim environmental guidelines, mercury contamination in the Strait of Malacca was found to be below these permissible limits. Sediment organic matter content was found to have significant correlation with sediment mercury concentration. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in tropical estuaries and coastal sediments.
  20. Isa NM, Aris AZ, Sulaiman WN
    Sci Total Environ, 2012 Nov 1;438:414-25.
    PMID: 23022725 DOI: 10.1016/j.scitotenv.2012.08.069
    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; p<0.01), which can be defined as the effect of salinization. The mechanisms involved in groundwater chemistry changes were ion exchange and mineralization. These processes can be demonstrated using Piper's diagram in which the water type has shifted into a Na-HCO(3) water type from a Ca-HCO(3) water type. Saturation indices have been calculated in order to determine the saturation condition related to dissolution or the precipitation state of the aquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; p<0.01). This indicates that the major mineral component in Kapas Island is Ca ion, which contributes to the groundwater chemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links