Displaying all 5 publications

Abstract:
Sort:
  1. Asaduzzaman M, Shakur Ahammad AK, Asakawa S, Kinoshita S, Watabe S
    PMID: 26335505 DOI: 10.1016/j.cbpb.2015.08.009
    In zebrafish, fast muscle-specific myosin heavy chain genes have their unique expression patterns in a well-defined and restricted region of the skeletal muscle. However, the transcriptional regulatory mechanisms involved have remained unclear. Here, we examined the regulation of spatio-temporal expression patterns of myhz1 (myhz1.1, myhz1.2 and myhz1.3) and myhz2 during their development by using transient gene and stable transgenic techniques. Embryos microinjected with different length 5'-flanking sequences of myhz1 conjugated with the enhanced green fluorescent protein (EGFP) gene showed EGFP expression in the anterior and medial subsections of somites, but not in the tail somite region. In contrast, embryos microinjected with different length 5'-flanking sequences of myhz2 showed EGFP expression exclusively at the posterior tail somite domain. Promoter deletion analyses demonstrated that reduced EGFP fluorescence typically is correlated with smaller 5'-flanking sequences. The immunohistochemical observation revealed that zebrafish larvae provided with the transient gene and those from stable transgenic lines consistently expressed EGFP in the fast muscle fibers. r-VISTA plot identified one common conserved region of about 140°bp among myhz1.1, myhz1.2 and myhz1.3. Deletion of this conserved region from the 5'-flanking sequence of each myhz1 markedly reduced EGFP expression in its unique spatial somite region. Deletion mutation analysis demonstrated that myhz2 expression in the tail somite region might be mediated by Tbx (family of transcription factors having a common DNA-binding sequence known as T-box) binding elements. In summary, 5'-flanking sequences of myhz1 and myhz2 regulate their unique expression patterns in a well-defined and restricted somite region of the skeletal muscle in zebrafish.
  2. Akolkar DB, Asaduzzaman M, Kinoshita S, Asakawa S, Watabe S
    Gene, 2016 Jan 1;575(1):21-8.
    PMID: 26297555 DOI: 10.1016/j.gene.2015.08.031
    Pax3 and Pax7 are the regulators and markers of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. However, information regarding them in vertebrate genome model, torafugu Takifugu rubripes, has remained unknown. Therefore, as an initial step, here we characterized Pax3 and Pax7 from torafugu and investigated their expression patterns during different developmental stages by RT-PCR. In silico analysis with the Fugu genome database (ver. 4.0) yielded two distinct genes each for Pax3 (Pax3a and Pax3b) and Pax7 (Pax7a and Pax7b). The 75th amino acid, glutamine (Gln75), from the N-terminus was replaced by proline in the paired box domain (PD) of Pax3a. One single cDNA clone encoding Pax3a had deletion of Gln75 in PD, suggesting the presence of alternatively spliced variants (Q+/Q-). This was further supported by identification of two adjacent alternative 3' splice acceptor sites which produce Pax3b Q+ (aagCAGGGA) and Q- (aagcagGGA) variants. Interestingly, torafugu Pax7a, but not Pax7b, had an insert encoding five amino acid residues (SGEAS) in a C-terminal region of PD in two out of three cDNA clones. Genomic analysis showed two alternate splice donor sites at exon 4 of Pax7a. In synteny analysis, torafugu Pax3a showed syntenic relationship with the corresponding regions in other teleosts only, whereas Pax3b and Pax7b showed high syntenic relationship with the corresponding regions of both mammals and other teleosts. RT-PCR revealed that expression of Pax3a and Pax3b transcripts was restricted to embryonic stages only, whereas those of Pax7a and Pax7b was continued to be expressed in larvae and importantly those of Pax7a were found in adult skeletal muscles. Therefore, Pax3 appears to be most important for primary myogenesis and Pax7 for secondary myogenesis and growth by hyperplasia in fish. In this regard, the transcripts of torafugu Pax3 and Pax7 genes might be used for further investigation as a marker for identification of muscle precursor cells during different phases of growth, and this ambiguity is the next target of our research.
  3. Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, et al.
    Genes (Basel), 2019 12 30;11(1).
    PMID: 31905942 DOI: 10.3390/genes11010046
    The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
  4. Ahammad AK, Asaduzzaman M, Asakawa S, Watabe S, Kinoshita S
    Mech. Dev., 2015 Aug;137:53-65.
    PMID: 25842264 DOI: 10.1016/j.mod.2015.02.006
    Teleosts are unique among vertebrates due to their indeterminate muscle growth, i.e., continued production of neonatal muscle fibers until death. However, the molecular mechanism(s) underlying this property is unknown. Here, we focused on the torafugu (Takifugu rubripes) myosin heavy chain gene, MYHM2528-1, which is specifically expressed in neonatal muscle fibers produced by indeterminate muscle growth. We examined the flanking region of MYHM2528-1 through an in vivo reporter assay using zebrafish (Danio rerio) and identified a 2100 bp 5'-flanking sequence that contained sufficient promoter activity to allow specific gene expression. The effects of enhanced promoter activity were observed at the outer region of the fast muscle and the dorsal edge of slow muscle in zebrafish larvae. At the juvenile stage, the promoter was specifically activated in small diameter muscle fibers scattered throughout fast muscle and in slow muscle near the septum separating slow and fast muscles. This spatio-temporal promoter activity overlapped with known myogenic zones involved in teleost indeterminate muscle growth. A deletion mutant analysis revealed that the -2100 to -600 bp 5'flanking sequence of MYHM2528-1 is essential for promoter activity. This region contains putative binding sites for several representative myogenesis-related transcription factors and nuclear factor of activated T-cell (NFAT), a transcription activator involved in regeneration of mammalian adult skeletal muscle. A significant reduction in the promoter activity of the MYHM2528-1 deletion constructs was observed in accordance with a reduction in the number of these binding sites, suggesting the involvement of specific transcription factors in indeterminate muscle growth.
  5. Asaduzzaman M, Wahab MA, Rahman MJ, Nahiduzzzaman M, Dickson MW, Igarashi Y, et al.
    Sci Rep, 2019 11 05;9(1):16050.
    PMID: 31690767 DOI: 10.1038/s41598-019-52465-2
    The anadromous Hilsa shad (Tenualosa ilisha) live in the Bay of Bengal and migrate to the estuaries and freshwater rivers for spawning and nursing of the juveniles. This has led to two pertinent questions: (i) do all Hilsa shad that migrate from marine to freshwater rivers come from the same population? and (ii) is there any relationship between adults and juveniles of a particular habitat? To address these questions, NextRAD sequencing was applied to genotype 31,276 single nucleotide polymorphism (SNP) loci for 180 individuals collected from six strategic locations of riverine, estuarine and marine habitats. FST OutFLANK approach identified 14,815 SNP loci as putatively neutral and 79 SNP loci as putatively adaptive. We observed that divergent local adaptations in differing environmental habitats have divided Hilsa shad into three genetically structured ecotypes: turbid freshwater (Western Riverine), clear freshwater (Eastern Riverine) and brackish-saline (Southern Estuarine-Marine). Our results also revealed that genes involved in neuronal activity may have facilitated the juveniles' Hilsa shad in returning to their respective natal rivers for spawning. This study emphasized the application of fundamental population genomics information in strategizing conservation and management of anadromous fish such as Hilsa shad that intersect diverse ecotypes during their life-history stages.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links