Displaying all 9 publications

Abstract:
Sort:
  1. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al.
    PLoS Biol, 2008 Mar 04;6(3):e45.
    PMID: 18318600 DOI: 10.1371/journal.pbio.0060045
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.
  2. Plotkin JB, Chave J, Ashton PS
    Am Nat, 2002 Nov;160(5):629-44.
    PMID: 18707513 DOI: 10.1086/342823
    Tree species in tropical rain forests exhibit a rich panoply of spatial patterns that beg ecological explanation. The analysis of tropical census data typically relies on spatial statistics, which quantify the average aggregation tendency of a species. In this article we develop a cluster-based approach that complements traditional spatial statistics in the exploration and analysis of ecological hypotheses for spatial pattern. We apply this technique to six study species within a fully mapped 50-ha forest census in peninsular Malaysia. For each species we identify the scale(s) of spatial aggregation and the corresponding tree clusters. We study the correlation between cluster locations and abiotic variables such as topography. We find that the distribution of cluster sizes exhibits equilibrium and nonequilibrium behavior depending on species life history. The distribution of tree diameters within clusters also varies according to species life history. At different spatial scales, we find evidence for both niche-based and dispersal-limited processes producing spatial pattern. Our methodology for identifying scales of aggregation and clusters is general; we discuss the method's applicability to spatial problems outside of tropical plant ecology.
  3. Kohyama TS, Potts MD, Kohyama TI, Kassim AR, Ashton PS
    Am Nat, 2015 Mar;185(3):367-79.
    PMID: 25674691 DOI: 10.1086/679664
    Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory.
  4. Condit R, Ashton PS, Manokaran N, LaFrankie JV, Hubbell SP, Foster RB
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1739-48.
    PMID: 11605618
    Dynamics of the Pasoh forest in Peninsular Malaysia were assessed by drawing a comparison with a forest in Panama, Central America, whose dynamics have been thoroughly described. Census plots of 50 ha were established at both sites using standard methods. Tree mortality at Pasoh over an eight-year interval was 1.46% yr(-1) for all stems > or = 10 mm diameter at breast height (dbh), and 1.48% yr(-1) for stems > or = 100 mm dbh. Comparable figures at the Barro Colorado Island site in Panama (BCI) were 2.55% and 2.03%. Growth and recruitment rates were likewise considerably higher at BCI than at Pasoh. For example, in all trees 500-700 mm in dbh, mean BCI growth over the period 1985-1995 was 6 mm yr(-1), whereas mean Pasoh growth was about 3.5 mm yr(-1). Examining growth and mortality rates for individual species showed that the difference between the forests can be attributed to a few light-demanding pioneer species at BCI, which have very high growth and mortality; Pasoh is essentially lacking this guild. The bulk of the species in the two forests are shade-tolerant and have very similar mortality, growth and recruitment. The Pasoh forest is more stable than BCI's in another way as well: few of its tree populations changed much over the eight-year census interval. In contrast, at BCI, over 10% of the species had populations increasing or decreasing at a rate of >0.05 yr(-1) compared to just 2% of the species at Pasoh). The faster species turnover at BCI can probably be attributed to severe droughts that have plagued the forest periodically over the past 30 years; Pasoh has not suffered such extreme events recently. The dearth of pioneer species at Pasoh is associated with low-nutrient soil and slow litter breakdown, but the exact mechanisms behind this association remain poorly understood.
  5. Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, et al.
    Science, 2000 May 26;288(5470):1414-8.
    PMID: 10827950
    Fully mapped tree census plots of large area, 25 to 52 hectares, have now been completed at six different sites in tropical forests, including dry deciduous to wet evergreen forest on two continents. One of the main goals of these plots has been to evaluate spatial patterns in tropical tree populations. Here the degree of aggregation in the distribution of 1768 tree species is examined based on the average density of conspecific trees in circular neighborhoods around each tree. When all individuals larger than 1 centimeter in stem diameter were included, nearly every species was more aggregated than a random distribution. Considering only larger trees (>/= 10 centimeters in diameter), the pattern persisted, with most species being more aggregated than random. Rare species were more aggregated than common species. All six forests were very similar in all the particulars of these results.
  6. Quek SP, Davies SJ, Ashton PS, Itino T, Pierce NE
    Mol Ecol, 2007 May;16(10):2045-62.
    PMID: 17498231
    We investigate the geographical and historical context of diversification in a complex of mutualistic Crematogaster ants living in Macaranga trees in the equatorial rain forests of Southeast Asia. Using mitochondrial DNA from 433 ant colonies collected from 32 locations spanning Borneo, Malaya and Sumatra, we infer branching relationships, patterns of genetic diversity and population history. We reconstruct a time frame for the ants' diversification and demographic expansions, and identify areas that might have been refugia or centres of diversification. Seventeen operational lineages are identified, most of which can be distinguished by host preference and geographical range. The ants first diversified 16-20 Ma, not long after the onset of the everwet forests in Sundaland, and achieved most of their taxonomic diversity during the Pliocene. Pleistocene demographic expansions are inferred for several of the younger lineages. Phylogenetic relationships suggest a Bornean cradle and major axis of diversification. Taxonomic diversity tends to be associated with mountain ranges; in Borneo, it is greatest in the Crocker Range of Sabah and concentrated also in other parts of the northern northwest coast. Within-lineage genetic diversity in Malaya and Sumatra tends to also coincide with mountain ranges. A series of disjunct and restricted distributions spanning northern northwest Borneo and the major mountain ranges of Malaya and Sumatra, seen in three pairs of sister lineages, further suggests that these regions were rain-forest refuges during drier climatic phases of the Pleistocene. Results are discussed in the context of the history of Sundaland's rain forests.
  7. Russo SE, McMahon SM, Detto M, Ledder G, Wright SJ, Condit RS, et al.
    Nat Ecol Evol, 2021 Feb;5(2):174-183.
    PMID: 33199870 DOI: 10.1038/s41559-020-01340-9
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth-mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth-mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth-mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth-mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure.
  8. Feeley KJ, Davies SJ, Ashton PS, Bunyavejchewin S, Nur Supardi MN, Kassim AR, et al.
    Proc Biol Sci, 2007 Nov 22;274(1627):2857-64.
    PMID: 17785266
    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.
  9. Dong SX, Davies SJ, Ashton PS, Bunyavejchewin S, Supardi MN, Kassim AR, et al.
    Proc Biol Sci, 2012 Oct 7;279(1744):3923-31.
    PMID: 22833269
    The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links