Displaying publications 1 - 20 of 78 in total

Abstract:
Sort:
  1. Bashir A, Asif M, Saadullah M, Saleem M, Khalid SH, Hussain L, et al.
    ACS Omega, 2022 Jul 26;7(29):25772-25782.
    PMID: 35910099 DOI: 10.1021/acsomega.2c03053
    Melilotus indicus (L.) All. is known to have anti-inflammatory and anticancer properties. The present study explored the in vivo skin carcinogenesis attenuating potential of ethanolic extract of M. indicus (L.) All. (Miet) in a 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer model. The ethanolic extract of the plant was prepared by a maceration method. HPLC analysis indicated the presence of quercetin in abundance and also various other phytoconstituents. DPPH radical scavenging assay results showed moderate antioxidant potential (IC50 = 93.55 ± 5.59 μg/mL). A topical acute skin irritation study showed the nonirritant nature of Miet. Data for the skin carcinogenic model showed marked improvement in skin architecture in Miet and its primary phytochemicals (quercetin and coumarin) treated groups. Miet 50% showed comparable effects with 5-fluorouracil. Significant (p < 0.05) anticancerous effects were seen in coumarin-quercetin combination-treated animals than in single agent (coumarin and quercetin alone)-treated animals. Chorioallantoic membrane (CAM) assay results showed the antiangiogenic potential of Miet. Treatment with Miet significantly down-regulated the serum levels of CEA (carcinoembryonic antigen) and TNF-α (Tumor necrosis factor-α). Data for the docking study indicated the binding potential of quercetin and coumarin with TNF-α, EGFR, VEGF, and BCL2 proteins. Thus, it is concluded that Miet has skin cancer attenuating potential that is proposed to be due to the synergistic actions of its bioactive molecules. Further studies to explore the effects of Miet and its bioactive molecules as an adjuvant therapy with low dose anticancer drugs are warranted, which may lead to a new area of research.
  2. Ramachandran E, Krishnaiah R, Perumal Venkatesan E, Medapati SR, Sabarish R, Khan SA, et al.
    ACS Omega, 2024 Jan 09;9(1):741-752.
    PMID: 38222659 DOI: 10.1021/acsomega.3c06327
    This study investigates the feasibility of hydrogen addition to achieve lower emissions and higher thermal efficiency in an ammonia-biodiesel-fueled reactivity-controlled compression ignition (RCCI) engine. A single-cylinder light-duty water-cooled compression ignition (CI) engine was adapted to run in RCCI combustion with port-injected ammonia and hydrogen as low reactive fuel (LRF) and direct-injected algal biodiesel as high reactive fuel (HRF). In our earlier study, the ammonia substitution ratio (ASR) was optimized as 40%. To optimize fuel and engine settings, hydrogen is added in quantities ranging from 5 to 20% by energy share. The combustion, performance, and emission characteristics were investigated for the trinary fuel operation. The result shows that the 20% hydrogen premixing with 40% ammonia-biodiesel RCCI operation increased the peak cylinder pressure (CP), peak heat release rate (HRR), and cumulative heat release rate (CHRR) by 15.12, 25.15, and 26.68%, respectively. Ignition delay (ID) and combustion duration (CD) were decreased by 15.53 and 11.24%, respectively. The combustion phasing angle was advanced by 4 °CA. The brake thermal efficiency (BTE) was improved by 15.49%, and brake specific energy consumption (BSEC) was reduced by 21.92%. While the nitrogen oxide (NOx) level was significantly increased by about 31.82%, the hydrocarbon (HC), carbon monoxide (CO), smoke, and exhaust gas temperature (EGT) were reduced by 24.53, 28.16, 25.82, and 17.47% as compared to the optimized ASR40% combustion.
  3. Venkatesan EP, Krishnaiah R, Prasad K, Medapati SR, Sree SR, Asif M, et al.
    ACS Omega, 2024 Feb 13;9(6):6709-6718.
    PMID: 38371774 DOI: 10.1021/acsomega.3c07871
    Alternative energy sources, such as biodiesel, play a vital role in environmental protection. Waste cooking oil (WCO) biodiesel has promising applications in compression ignition engines. A major problem regarding biodiesel implementation is the deterioration and materials incompatibility of existing fuel system components with biodiesel. Variations in the composition of fuel prompted by the inclusion of biodiesel cause a variety of issues in diesel engine fuel systems where the elastomer is generally utilized as the fuel hose material and sealings. In this experimental work, the effects of the diesel and WCO biodiesel blends (B8, B16, B24, and B100) on Buna-N, ethylene propylene rubber (EPR), and polystyrene (PS) were examined by the immersion test, which was conducted for 160 h at various immersion temperatures of 30, 60, and 80 °C, respectively. The study also showed that the use of elastomer materials like Buna-N, EPR, and PS in diesel engines fueled up to 20% WCO biodiesel blends is advantageous; the overall compatibility improves by 100% compared to that obtained using neat diesel. The outcome revealed remarkable behavior changes, including a minor increase in volume and a slight loss in tensile strength and hardness compared to that observed using neat diesel fuel. The expansion of rubber materials increases over 60 °C, although the rate of this process decreases above 80 °C. It has been found that the expansion of rubber materials is unaffected by the acid concentration of the WCO biodiesel blends but significantly affected by the moisture content.
  4. Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM
    ACS Omega, 2024 Apr 09;9(14):15882-15892.
    PMID: 38617686 DOI: 10.1021/acsomega.3c08143
    In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.
  5. Tajuddin S, Khan AM, Chong LC, Wong CL, Tan JS, Ina-Salwany MY, et al.
    Appl Microbiol Biotechnol, 2023 Feb;107(2-3):749-768.
    PMID: 36520169 DOI: 10.1007/s00253-022-12312-3
    Vibrio alginolyticus is a Gram-negative bacterium commonly associated with mackerel poisoning. A bacteriophage that specifically targets and lyses this bacterium could be employed as a biocontrol agent for treating the bacterial infection or improving the shelf-life of mackerel products. However, only a few well-characterized V. alginolyticus phages have been reported in the literature. In this study, a novel lytic phage, named ΦImVa-1, specifically infecting V. alginolyticus strain ATCC 17749, was isolated from Indian mackerel. The phage has a short latent period of 15 min and a burst size of approximately 66 particles per infected bacterium. ΦImVa-1 remained stable for 2 h at a wide temperature (27-75 °C) and within a pH range of 5 to 10. Transmission electron microscopy revealed that ΦImVa-1 has an icosahedral head of approximately 60 nm in diameter with a short tail, resembling those in the Schitoviridae family. High throughput sequencing and bioinformatics analysis elucidated that ΦImVa-1 has a linear dsDNA genome of 77,479 base pairs (bp), with a G + C content of ~ 38.72% and 110 predicted gene coding regions (106 open reading frames and four tRNAs). The genome contains an extremely large virion-associated RNA polymerase gene and two smaller non-virion-associated RNA polymerase genes, which are hallmarks of schitoviruses. No antibiotic genes were found in the ΦImVa-1 genome. This is the first paper describing the biological properties, morphology, and the complete genome of a V. alginolyticus-infecting schitovirus. When raw mackerel fish flesh slices were treated with ΦImVa-1, the pathogen loads reduced significantly, demonstrating the potential of the phage as a biocontrol agent for V. alginolyticus strain ATCC 17749 in the food. KEY POINTS: • A novel schitovirus infecting Vibrio alginolyticus ATCC 17749 was isolated from Indian mackerel. • The complete genome of the phage was determined, analyzed, and compared with other phages. • The phage is heat stable making it a potential biocontrol agent in extreme environments.
  6. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

  7. James SA, Ong HS, Hari R, Khan AM
    BMC Genomics, 2021 Sep 28;22(Suppl 3):700.
    PMID: 34583643 DOI: 10.1186/s12864-021-07657-4
    BACKGROUND: Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications.

    RESULTS: This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions.

    CONCLUSION: Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin.

  8. Lim WC, Khan AM
    BMC Genomics, 2018 01 19;19(Suppl 1):42.
    PMID: 29363421 DOI: 10.1186/s12864-017-4328-8
    BACKGROUND: Ebolavirus (EBOV) is responsible for one of the most fatal diseases encountered by mankind. Cellular T-cell responses have been implicated to be important in providing protection against the virus. Antigenic variation can result in viral escape from immune recognition. Mapping targets of immune responses among the sequence of viral proteins is, thus, an important first step towards understanding the immune responses to viral variants and can aid in the identification of vaccine targets. Herein, we performed a large-scale, proteome-wide mapping and diversity analyses of putative HLA supertype-restricted T-cell epitopes of Zaire ebolavirus (ZEBOV), the most pathogenic species among the EBOV family.

    METHODS: All publicly available ZEBOV sequences (14,098) for each of the nine viral proteins were retrieved, removed of irrelevant and duplicate sequences, and aligned. The overall proteome diversity of the non-redundant sequences was studied by use of Shannon's entropy. The sequences were predicted, by use of the NetCTLpan server, for HLA-A2, -A3, and -B7 supertype-restricted epitopes, which are relevant to African and other ethnicities and provide for large (~86%) population coverage. The predicted epitopes were mapped to the alignment of each protein for analyses of antigenic sequence diversity and relevance to structure and function. The putative epitopes were validated by comparison with experimentally confirmed epitopes.

    RESULTS & DISCUSSION: ZEBOV proteome was generally conserved, with an average entropy of 0.16. The 185 HLA supertype-restricted T-cell epitopes predicted (82 (A2), 37 (A3) and 66 (B7)) mapped to 125 alignment positions and covered ~24% of the proteome length. Many of the epitopes showed a propensity to co-localize at select positions of the alignment. Thirty (30) of the mapped positions were completely conserved and may be attractive for vaccine design. The remaining (95) positions had one or more epitopes, with or without non-epitope variants. A significant number (24) of the putative epitopes matched reported experimentally validated HLA ligands/T-cell epitopes of A2, A3 and/or B7 supertype representative allele restrictions. The epitopes generally corresponded to functional motifs/domains and there was no correlation to localization on the protein 3D structure. These data and the epitope map provide important insights into the interaction between EBOV and the host immune system.

  9. Atif M, Sulaiman SA, Shafie AA, Asif M, Babar ZU
    BMC Health Serv Res, 2014 Aug 19;14:353.
    PMID: 25138659 DOI: 10.1186/1472-6963-14-353
    BACKGROUND: Studies from both developed and developing countries have demonstrated a considerable fluctuation in the average cost of TB treatment. The objective of this study was to analyze the medical resource utilization among new smear positive pulmonary tuberculosis patients. We also estimated the cost of tuberculosis treatment from the provider and patient perspectives, and identified the significant cost driving factors.
    METHODS: All new smear positive pulmonary tuberculosis patients who were registered at the chest clinic of the Penang General Hospital, between March 2010 and February 2011, were invited to participate in the study. Provider sector costs were estimated using bottom-up, micro-costing technique. For the calculation of costs from the patients' perspective, all eligible patients who agreed to participate in the study were interviewed after the intensive phase and subsequently at the end of the treatment by a trained nurse. PASW was used to analyze the data (Predictive Analysis SoftWare, version 19.0, Armonk, NY: IBM Corp.).
    RESULTS: During the study period, 226 patients completed the treatment. However, complete costing data were available for 212 patients. The most highly utilized resources were chest X-ray followed by sputum smear examination. Only a smaller proportion of the patients were hospitalized. The average provider sector cost was MYR 992.34 (i.e., USD 325.35 per patient) whereby the average patient sector cost was MYR 1225.80 (i.e., USD 401.90 per patient). The average patient sector cost of our study population accounted for 5.7% of their annual family income. In multiple linear regression analysis, prolonged treatment duration (i.e., > 6 months) was the only predictor of higher provider sector costs whereby higher patient sector costs were determined by greater household income and persistent cough at the end of the intensive phase of the treatment.
    CONCLUSION: In relation to average provider sector cost, our estimates are substantially higher than the budget allocated by the Ministry of Health for the treatment of a tuberculosis case in Malaysia. The expenses borne by the patients and their families on the treatment of the current episode of tuberculosis were not catastrophic for them.
    Study site: Chest clinic, Hospital Pulau Pinang, Malaysia
  10. Atif M, Sulaiman SA, Shafie AA, Ali I, Asif M, Babar ZU
    BMC Infect Dis, 2014;14:399.
    PMID: 25037452 DOI: 10.1186/1471-2334-14-399
    According to the World Health Organization's recent report, in Malaysia, tuberculosis (TB) treatment success rate for new smear positive pulmonary tuberculosis (PTB) patients is still below the global success target of 85%. In this study, we evaluated TB treatment outcome among new smear positive PTB patients, and identified the predictors of unsuccessful treatment outcome and longer duration of treatment (i.e., > 6 months).
  11. Khan AM, Hu Y, Miotto O, Thevasagayam NM, Sukumaran R, Abd Raman HS, et al.
    BMC Med Genomics, 2017 12 21;10(Suppl 4):78.
    PMID: 29322922 DOI: 10.1186/s12920-017-0301-2
    BACKGROUND: Viral vaccine target discovery requires understanding the diversity of both the virus and the human immune system. The readily available and rapidly growing pool of viral sequence data in the public domain enable the identification and characterization of immune targets relevant to adaptive immunity. A systematic bioinformatics approach is necessary to facilitate the analysis of such large datasets for selection of potential candidate vaccine targets.

    RESULTS: This work describes a computational methodology to achieve this analysis, with data of dengue, West Nile, hepatitis A, HIV-1, and influenza A viruses as examples. Our methodology has been implemented as an analytical pipeline that brings significant advancement to the field of reverse vaccinology, enabling systematic screening of known sequence data in nature for identification of vaccine targets. This includes key steps (i) comprehensive and extensive collection of sequence data of viral proteomes (the virome), (ii) data cleaning, (iii) large-scale sequence alignments, (iv) peptide entropy analysis, (v) intra- and inter-species variation analysis of conserved sequences, including human homology analysis, and (vi) functional and immunological relevance analysis.

    CONCLUSION: These steps are combined into the pipeline ensuring that a more refined process, as compared to a simple evolutionary conservation analysis, will facilitate a better selection of vaccine targets and their prioritization for subsequent experimental validation.

  12. Rasool M, Malik A, Abdul Basit Ashraf M, Mubbin R, Ayyaz U, Waquar S, et al.
    Bioengineered, 2021 12;12(1):4593-4604.
    PMID: 34346287 DOI: 10.1080/21655979.2021.1955528
    The Vaccinium genus comprises more than 126 genera of perennial flowering plants that are commonly adapted to poor and acidic soils or epiphytic environments. Their molecular and genomic characterization is a result of the recent advent in next-generation sequencing technology. In the current research, extracts were prepared in different media, such as petroleum ether, methanol and ethanol. An extract of Vaccinium macrocarpon (cranberry) was used at a dose of 200-400 mg/kg by weight (B.wt). Levels of oxidative stress markers, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), advanced oxidation protein products (AOPPs) and malondialdehyde (MDA), were measured. A histopathological study of six vital organs in rats was also conducted. The results indicated that the antioxidant levels were lower in the group given only ethylene oxide (EtO) but higher in the groups receiving cranberry extract as a treatment. Major improvements were also observed in stress markers such as advanced oxidation protein products (AOPPs) and MDA following cranberry treatment. Histopathological changes induced by EtO were observed in the heart, kidney, liver, lung, stomach and testis and were reversed following cranberry treatment. The major toxic effects of EtO were oxidative stress and organ degeneration, as observed from various stress markers and histopathological changes. Our study showed that this extract contains strong antioxidant properties, which may contribute to the amelioration of the observed toxic effects.
  13. Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M, et al.
    Bioengineered, 2022 Jan;13(1):759-773.
    PMID: 34856849 DOI: 10.1080/21655979.2021.2012907
    Nanomedicines are applied as alternative treatments for anticancer agents. For the treatment of cancer, due to the small size in nanometers (nm), specific site targeting can be achieved with the use of nanomedicines, increasing their bioavailability and conferring fewer toxic side effects. Additionally, the use of minute amounts of drugs can lead to cost savings. In addition, nanotechnology is effectively applied in the preparation of such drugs as they are in nm sizes, considered one of the earliest cutoff values for the production of products utilized in nanotechnology. Early concepts described gold nanoshells as one of the successful therapies for cancer and associated diseases where the benefits of nanomedicine include effective active or passive targeting. Common medicines are degraded at a higher rate, whereas the degradation of macromolecules is time-consuming. All of the discussed properties are responsible for executing the physiological behaviors occurring at the following scale, depending on the geometry. Finally, large nanomaterials based on organic, lipid, inorganic, protein, and synthetic polymers have also been utilized to develop novel cancer cures.
  14. Yehya AHS, Asif M, Abdul Majid AMS, Oon CE
    Biomed J, 2021 Dec;44(6):694-708.
    PMID: 35166208 DOI: 10.1016/j.bj.2020.05.015
    BACKGROUND: Pancreatic cancer is one of the most notorious cancers and is known for its highly invasive characteristics, drug resistance, and metastatic progression. Unfortunately, many patients with advanced pancreatic cancer become insensitive towards gemcitabine treatment. Orthosiphon stamineus (O.s) is used widely as a traditional medicine for the treatment of multiple ailments, including cancer in South East Asia. The present in vitro study was designed to investigate the complementary effects of an ethanolic extract of O.s (Et. O.s) or rosmarinic acid in combination with gemcitabine on Panc-1 pancreatic cancer cells.

    METHOD: Cell viability and colony formation assays were used to determine the 50% inhibitory concentration (IC50) of Et. O.s, rosmarinic acid, and gemcitabine. Different doses of gemcitabine in combination with Et. O.s or rosmarinic acid were tested against Panc-1 to select the best concentrations which possessed synergistic effects. Elucidation of molecular mechanisms responsible for mediating chemo-sensitivity in Panc-1 was performed using Quantitative Real-time PCR (QPCR), flow cytometry and immunohistochemistry.

    RESULTS: Et. O.s was found to significantly sensitise Panc-1 towards gemcitabine by reducing the gene expression of multidrug-resistant protein family (MDR) (MDR-1, MRP-4, and MRP-5) and molecules related to epithelial-mesenchymal transition (ZEB-1 and Snail-1). An induction of the human equilibrate nucleoside transporter-1 (hENT-1) gene was also found in cells treated with Et. O.s-gemcitabine. The Et. O.s-gemcitabine combination induced cellular senescence, cell death and cell cycle arrest in Panc-1. In addition, the inhibition of Notch signalling was demonstrated through the downregulation of Notch 1 intracellular domain in this treatment group. In contrast, rosmarinic acid-gemcitabine combination showed no additional effects on cellular senescence, apoptosis, epithelial mesenchymal transition (EMT) markers, the MRP-4 and MRP-5 multi-drug resistance protein family, hENT-1, and the Notch pathway through Notch 1 intracellular domain.

    CONCLUSION: This study provides valuable insights on the use of Et. O.s to complement gemcitabine in targeting pancreatic cancer in vitro, suggesting its potential use as a novel complementary treatment in pancreatic cancer patients.

  15. Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, et al.
    Biomed Pharmacother, 2019 Jan;109:1620-1629.
    PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127
    Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
  16. Jafari SF, Al-Suede FSR, Yehya AHS, Ahamed MBK, Shafaei A, Asif M, et al.
    Biomed Pharmacother, 2020 Oct;130:110602.
    PMID: 32771894 DOI: 10.1016/j.biopha.2020.110602
    PURPOSE: Koetjapic acid is an active compound of a traditional medicinal plant, Sandoricum koetjape. Although koetjapic acid has a promising anticancer potential, yet it is highly insoluble in aqueous solutions. To increase aqueous solubility of koetjapic acid, we have previously reported a chemical modification of koetjapic acid to potassium koetjapate (KKA). However, pharmacokinetics of KKA has not been studied. In this study, pharmacokinetics and antiangiogenic efficacy of KKA are investigated.

    METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.

    RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.

    CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.

  17. Islam MA, Asif M, Hameed BH
    Bioresour Technol, 2015 Mar;179:227-233.
    PMID: 25545092 DOI: 10.1016/j.biortech.2014.11.115
    The pyrolysis of karanj fruit hulls (KFH) and karanj fruit hull hydrothermal carbonization (KFH-HTC) hydrochar was thermogravimetrically investigated under a nitrogen environment at 5 °C/min, 10 °C/min, and 20 °C/min. The pyrolysis decomposition of KFH biomass was faster than that of KFH-HTC hydrochar because of the high volatility and fixed carbon of KFH biomass. Weight loss percentage was also affected by the heating rates. The kinetic data were evaluated with the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods. The activation energy values obtained with these two methods were 61.06 and 68.53 kJ/mol for KFH biomass and 130.49 and 135.87 kJ/mol for KFH-HTC hydrochar, respectively. The analysis of kinetic process mechanisms was verified with the Coats-Redfern method. KFH-HTC hydrochar may play a potential role in transforming biomass to energy-rich feedstock for thermochemical applications because of its high heating value, high fixed carbon, and low ash and sulfur contents.
  18. Islam MA, Kabir G, Asif M, Hameed BH
    Bioresour Technol, 2015 Oct;194:14-20.
    PMID: 26176821 DOI: 10.1016/j.biortech.2015.06.094
    This study examined the combustion profile and kinetics of hydrochar produced from hydrothermal carbonisation (HTC) of Karanj fruit hulls (KFH). The HTC-KFH hydrochar combustion kinetics was investigated at 5, 10, and 20°C/min by thermogravimetric analysis. The kinetics model, Kissinger-Akahira-Sunose revealed the combustion kinetics parameters for the extent of conversion from 0.1 to 0.8; the activation energy varies from 114 to 67 kJ/mol respectively. The hydrochar combustion followed multi-steps kinetics; the Coats-Redfern models predicted the activation energies and pre-exponential constants for the hydrochar combustion zones. The diffusion models are the effective mechanism in the second and third zone.
  19. Ahmed MJ, Islam MA, Asif M, Hameed BH
    Bioresour Technol, 2017 Nov;243:778-784.
    PMID: 28711807 DOI: 10.1016/j.biortech.2017.06.174
    In this work, a human hair-derived high surface area porous carbon material (HHC) was prepared using potassium hydroxide activation. The morphology and textural properties of the HHC structure, along with its adsorption performance for tetracycline (TC) antibiotics, were evaluated. HHC showed a high surface area of 1505.11m(2)/g and 68.34% microporosity. The effects of most important variables, such as initial concentration (25-355mg/L), solution pH (3-13), and temperatures (30-50°C), on the HHC adsorption performance were investigated. Isotherm data analysis revealed the favorable application of the Langmuir model, with maximum TC uptakes of 128.52, 162.62, and 210.18mg/g at 30, 40, and 50°C, respectively. The experimental data of TC uptakes versus time were analyzed efficiently using a pseudo-first order model. Porous HHC could be an efficient adsorbent for eliminating antibiotic pollutants in wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links