Displaying publications 1 - 20 of 166 in total

Abstract:
Sort:
  1. Othman MA, Yuyama K, Murai Y, Igarashi Y, Mikami D, Sivasothy Y, et al.
    ACS Med Chem Lett, 2019 Aug 08;10(8):1154-1158.
    PMID: 31413799 DOI: 10.1021/acsmedchemlett.9b00171
    The interaction between natural occurring inhibitors and targeted membrane proteins could be an alternative medicinal strategy for the treatment of metabolic syndrome, notably, obesity. In this study, we identified malabaricones A-C and E (1-4) isolated from the fruits of Myristica cinnamomea King as natural inhibitors for sphingomyelin synthase (SMS), a membrane protein responsible for sphingolipid biosynthesis. Having the most promising inhibition, oral administration of compound 3 exhibited multiple efficacies in reducing weight gain, improving glucose tolerance, and reducing hepatic steatosis in high fat diet-induced obesity mice models. Liver lipid analysis revealed a crucial link between the SMS activities of compound 3 and its lipid metabolism in vitro and in vivo. The nontoxic nature of compound 3 makes it a suitable candidate in search of drugs which can be employed in the treatment and prevention of obesity.
  2. Ahmed Hamdi OA, Awang K, Hadi AH, Syamsir DR, Ng SW
    PMID: 21589030 DOI: 10.1107/S1600536810040559
    The title compound, systematic name 9-isopropyl-idene-2,6-dimethyl-11-oxatricyclo-[6.2.1.0(1,5)]undec-6-en-8-ol, C(15)H(22)O(2), which crystallizes with two mol-ecules of similar conformation in the asymmetric unit, features three fused rings, two of which are five-membered and the third six-membered. Of the two five-membered rings, the one with an O atom has a distinct envelope shape (with the O atom representing the flap). The six-membered ring is also envelope-shaped as it shares a common O atom with the five-membered ring. In the crystal, the two independent mol-ecules are linked by a pair of O-H⋯O hydrogen bonds, generating a dimer.
  3. Mukhtar MR, Zainal Abidin A, Awang K, A Hadi AH, Ng SW
    PMID: 21582249 DOI: 10.1107/S160053680900600X
    The mol-ecule of accanthomine A, C(15)H(13)N(5), is approximately planar, with the indolyl fused-ring and the pyrimidyl ring being twisted by 31.7 (1)° The amino group of the five-membered ring is an intramolecular hydrogen-bond donor to a nitro-gen acceptor of the pyrimide ring. The amino group of the pyrimide ring is a hydrogen-bond donor to the N atoms of adjacent mol-ecules. These hydrogen-bonding inter-actions give rise to a layered network with a 4.8(2) topology.
  4. Awang K, Yusoff M, Mohamad K, Chong SL, Ng SW
    PMID: 21583968 DOI: 10.1107/S1600536809015086
    3-Oxoolean-1-en-28-oic acid, isolated from the bark of Walsura pinnata Hassk, crystallized from n-hexane as an n-hexane 0.25-solvent 0.25-hydrate, C(30)H(46)O(3)·0.25C(6)H(14)·0.25H(2)O. There are two independent mol-ecules in the asymmetric unit of the title compound. The three six-membered cyclo-hexane rings in each mol-ecule adopt chair conformations and the carboxyl substituent occupies an axial/equatorial position. The two independent mol-ecules are linked by a pair of O-H(carbox-yl)⋯O hydrogen bonds into a dimer. The n-hexane mol-ecule is disordered about a twofold rotation axis and the water mol-ecule lies on a twofold rotation axis. In addition, the cyclo-hexone carbonyl group of one of the independent mol-ecules is disordered over two sites with occupancies of 0.75 and 0.25.
  5. Mohamad K, Yusoff M, Awang K, Ahmad K, Ng SW
    PMID: 21583174 DOI: 10.1107/S1600536809015955
    In the mol-ecule of pinnatane A, C(30)H(48)O(3), isolated from the bark of Walsura pinnata Hassk, the four cyclo-hexane rings adopt chair conformations; the carboxyl and hydr-oxy substituents occupy axial positions. The cyclo-hexene ring is envelope-shaped. Adjacent mol-ecules are linked by O-H⋯O hydrogen bonds into a chain running along the c axis.
  6. Kee CH, Thomas NF, Ariffin A, Awang K, Ng SW
    PMID: 21582840 DOI: 10.1107/S1600536809021874
    The title mol-ecule, C(22)H(16)N(2)O(4), is a 2,2'-disubstituted biphenyl whose phenyl-ene rings are rotated by 66.5 (1)° so as to avoid repulsion by the substituents. Only one of the two amide -NH- fragments engages in hydrogen bonding, and this inter-acts with the amido -C(=O)- acceptor of an inversion-related mol-ecule to generate a hydrogen-bonded dimer.
  7. Ahmad K, Thomas NF, Nafiah MA, Awang K, Ng SW
    PMID: 21583151 DOI: 10.1107/S1600536809017401
    In the title compound, C(17)H(17)NO(2), the phenyl-ene rings are bent with respect to the carbon-carbon double bond [dihedral angle between rings = 39.6 (1)°]. The acetamido group is twisted out of the plane of the aromatic ring [dihedral angle = 44.2 (1)°] in order to form an N-H⋯O hydrogen bond to the acetamido group of an adjacent mol-ecule, generating a zigzag chain running along the c axis.
  8. Ahmad K, Thomas NF, Din MF, Awang K, Ng SW
    PMID: 21583150 DOI: 10.1107/S1600536809017395
    In the title compound, C(17)H(17)NO(2), the phenyl-ene rings are nearly coplanar [dihedral angle 7.3 (1)°]. The acetamido group is twisted out of the plane of the aromatic ring in order to form an N-H⋯O hydrogen bond to the acetamido group of an adjacent mol-ecule, generating a helical chain running along the b axis.
  9. Kee CH, Thomas NF, Ariffin A, Awang K, Ng SW
    PMID: 21581068 DOI: 10.1107/S1600536808034569
    In the title mol-ecule, C(25)H(19)NO(2), the furyl ring is twisted by 46.3 (1)° with respect to the phenyl-ene ring bearing the amido group. In the stilbene unit, the two phenyl-ene rings (i.e. the rings connected through the -CH=CH- fragment) are twisted by 59.2 (1)°; in the biphenyl-ene unit, the two benzene rings are twisted by 35.5 (1)°. In the crystal structure, mol-ecules are linked by an N-H⋯O(amido) hydrogen bond into a zigzag chain running along the c axis.
  10. Najmuldeen IA, Hadi AH, Awang K, Mohamad K, Ng SW
    PMID: 21581023 DOI: 10.1107/S1600536808033163
    The asymmetric unit of the title compound, C(29)H(50)O(2), contains two mol-ecules; one mol-ecule is linked to the other by two O-H⋯O hydrogen bonds, whereas only one of the hydr-oxy groups of the second mol-ecule is involved in hydrogen bonding. This gives rise to a chain that runs along the a axis of the monoclinic unit cell.
  11. Chan G, Awang K, A Hadi AH, Ng SW
    PMID: 21202956 DOI: 10.1107/S1600536808018151
    The title compound, C(30)H(34)O(5), crystallizes with two symmetry-independent mol-ecules in the asymmetric unit. In the crystal structure, the two independent mol-ecules are disposed about a pseudo-center of inversion. An intra-molecular O-H⋯O hydrogen bond is observed in each independent mol-ecule. The crystal structure is stabilized by C-H⋯O hydrogen bonds.
  12. Mukhtar MR, Nafiah MA, Awang K, A Hadi AH, Ng SW
    PMID: 21202644 DOI: 10.1107/S1600536808014451
    The hydr-oxy groups in the title compound, C(16)H(14)O(4), are each hydrogen bonded to the adjacent meth-oxy O atom; one of the two hydr-oxy groups is additionally linked to the O atom of the meth-oxy group of another mol-ecule, forming a linear chain.
  13. Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, et al.
    Acta Trop, 2023 Dec;248:107033.
    PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033
    Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
  14. Kadir R, Awang K, Khamaruddin Z, Soit Z
    An Acad Bras Cienc, 2015 Apr-Jun;87(2):743-51.
    PMID: 26131633 DOI: 10.1590/0001-3765201520140041
    Wood extractives from heartwood of Callophylum inophyllum (bintangor) were obtained by shaker method and analyzed for their constituents by gas chromatography-mass spectrometry (GC-MS). Ten compounds were identified by ethanol (EtOH) solvents, fourteen by methanol (MeOH) and only nine by petroleum ether (PETETHR). Major compounds were contributed by monoterpenes (75.11%, 53.75%) when extracted with EtOH and PETETHR solvents. The anti-termitic assay of the wood extracts was also investigated against Coptotermes curvignathus. The level of concentration for anti-termite activity may be an indication of the dose application of the wood extracts for new development of termiticide.
  15. In LL, Azmi MN, Ibrahim H, Awang K, Nagoor NH
    Anticancer Drugs, 2011 Jun;22(5):424-34.
    PMID: 21346553 DOI: 10.1097/CAD.0b013e328343cbe6
    In this study, the apoptotic mechanism and combinatorial chemotherapeutic effects of the cytotoxic phenylpropanoid compound 1'S-1'-acetoxyeugenol acetate (AEA), extracted from rhizomes of the Malaysian ethnomedicinal plant Alpinia conchigera Griff. (Zingiberaceae), on MCF-7 human breast cancer cells were investigated for the first time. Data from cytotoxic and apoptotic assays such as live and dead and poly-(ADP-ribose) polymerase cleavage assays indicated that AEA was able to induce apoptosis in MCF-7 cells, but not in normal human mammary epithelial cells. A microarray global gene expression analysis of MCF-7 cells, treated with AEA, suggested that the induction of tumor cell death through apoptosis was modulated through dysregulation of the nuclear factor-kappaB (NF-κB) pathway, as shown by the reduced expression of various κB-regulated gene targets. Consequent to this, western blot analysis of proteins corresponding to the NF-κB pathway indicated that AEA inhibited phosphorylation levels of the inhibitor of κB-kinase complex, resulting in the elimination of apoptotic resistance originating from NF-κB activation. This AEA-based apoptotic modulation was elucidated for the first time in this study, and gave rise to the proposal of an NF-κB model termed the 'Switching/Alternating Model.' In addition to this, AEA was also found to synergistically enhance the proapoptotic effects of paclitaxel, when used in combination with MCF-7 cells, presumably by a chemosensitizing role. Therefore, it was concluded that AEA isolated from the Malaysian tropical ginger (A. conchigera) served as a very promising candidate for further in-vivo development in animal models and in subsequent clinical trials involving patients with breast-related malignancies.
  16. Cheah FK, Leong KH, Thomas NF, Chin HK, Ariffin A, Awang K
    Apoptosis, 2018 Jun;23(5-6):329-342.
    PMID: 29754265 DOI: 10.1007/s10495-018-1457-8
    Resveratrol, a naturally occurring polyphenolic antioxidant, is a potential chemoprophylactic agent for various cancers, including colorectal cancer. Although emerging evidence continually suggests that a number of resveratrol derivatives may be better cancer chemopreventive candidates than resveratrol, studies on the mechanism of action of these derivatives are limited. This is the first study which investigates the mechanism underlying the cytotoxic effect of a synthesized resveratrol analogue, (E)-N-(2-(4-methoxystyryl) phenyl) furan-2-carboxamide (CS) on colorectal cancer. Previously, our group reported a series of synthesized resveratrol analogues, which showed cytotoxicity against a panel of cancer cell lines, in particular on colon cancer cells. In this study, we further discovered that CS also exerts a potent suppressive effect on HCT116 colorectal cancer cells. In contrast, normal colon cells (CCD-112 Con) were not sensitive to CS up to 72 h post treatment. CS caused cytotoxicity in HCT116 cells through several apoptotic events including activation of the Fas death receptor, FADD, caspase 8, caspase 3, caspase 9, and cleaved PARP, which occurred alongside cell cycle arrest from the up-regulation of p53 and p21. The results show that CS causes apoptosis via the activation of an extrinsic pathway leading to caspase activation and cell cycle arrest from activated p53. These findings suggest that CS may be a potential candidate for development as an anti-tumor agent in the future.
  17. Zahari A, Ablat A, Sivasothy Y, Mohamad J, Choudhary MI, Awang K
    Asian Pac J Trop Med, 2016 Apr;9(4):328-332.
    PMID: 27086149 DOI: 10.1016/j.apjtm.2016.03.008
    OBJECTIVE: To study antiplasmodial and antioxidant activities of the isolation of alkaloids from the active dichloromethane extract of Alseodaphne corneri.

    METHODS: Phytochemical studies of the crude extract led to the isolation of six alkaloids using recycle high performance liquid chromatography and preparative thin layer chromatography. The antiplasmodial activity of the isolated compounds was evaluated using the histidine-rich protein II assay. The isolated alkaloids were also tested for their antioxidant activity using three different assays; DPPH, ferric reducing ability of plasma and metal chelating assays.

    RESULTS: Malaria infection caused the formation of free radicals which subsequently led to oxidative stress and apoptosis. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids could also prevent oxidative stress. (+)-laurotetanine and (+)-norstephasubine exhibited strong antiplasmodial activities with IC50 values of 0.189 and 0.116 μM, respectively.

    CONCLUSIONS: Interestingly, the two most potent compounds that exhibit antiplasmodial activity also exhibit good antioxidant activities. The crude dichloromethane extract and the isolated compounds exert substantial antiplasmodial and antioxidative activities which in turn suppress oxidative stress and cause less damage to the host.

  18. Rouhollahi E, Zorofchian Moghadamtousi S, Paydar M, Fadaeinasab M, Zahedifard M, Hajrezaie M, et al.
    PMID: 25652758 DOI: 10.1186/s12906-015-0534-6
    BACKGROUND: Curcuma purpurascens BI. (Zingiberaceae) commonly known as 'Koneng Tinggang' and 'Temu Tis' is a Javanese medicinal plant which has been used for numerous ailments and diseases in rural Javanese communities. In the present study, the apoptogenic activity of dichloromethane extract of Curcuma purpurascens BI. rhizome (DECPR) was investigated against HT-29 human colon cancer cells.
    METHODS: Acute toxicity study of DECPR was performed in Sprague-Dawley rats. Compounds of DECPR were analyzed by the gas chromatography-mass spectrometry-time of flight (GC-MS-TOF) analysis. Cytotoxic effect of DECPR on HT-29 cells was analyzed by MTT and lactate dehydrogenase (LDH) assays. Effects of DECPR on reactive oxygen species (ROS) formation and mitochondrial-initiated events were investigated using a high content screening system. The activities of the caspases were also measured using a fluorometric assay. The quantitative PCR analysis was carried out to examine the gene expression of Bax, Bcl-2 and Bcl-xl proteins.
    RESULTS: The in vivo acute toxicity study of DECPR on rats showed the safety of this extract at the highest dose of 5 g/kg. The GC-MS-TOF analysis of DECPR detected turmerone as the major compound in dichloromethane extract. IC50 value of DECPR towards HT-29 cells after 24 h treatment was found to be 7.79 ± 0.54 μg/mL. In addition, DECPR induced LDH release and ROS generation in HT-29 cells through a mechanism involving nuclear fragmentation and cytoskeletal rearrangement. The mitochondrial-initiated events, including collapse in mitochondrial membrane potential and cytochrome c leakage was also triggered by DECPR treatment. Initiator caspase-9 and executioner caspase-3 was dose-dependently activated by DECPR. The quantitative PCR analysis on the mRNA expression of Bcl-2 family of proteins showed a significant up-regulation of Bax associated with down-regulation in Bcl-2 and Bcl-xl mRNA expression.
    CONCLUSIONS: The findings presented in the current study showed that DECP suppressed the proliferation of HT-29 colon cancer cells and triggered the induction of apoptosis through mitochondrial-dependent pathway.
  19. Rouhollahi E, Moghadamtousi SZ, Hamdi OA, Fadaeinasab M, Hajrezaie M, Awang K, et al.
    PMID: 25283308 DOI: 10.1186/1472-6882-14-378
    Curcuma purpurascens BI. is a medicinal plant from the Zingiberaceae family, which is widely used as a spice and as folk medicine. The aim of the present study is to investigate the gastroprotective activity of C. purpurascens rhizome hexane extract (CPRHE) against ethanol- induced gastric ulcers in rats.
  20. In LL, Arshad NM, Ibrahim H, Azmi MN, Awang K, Nagoor NH
    PMID: 23043547 DOI: 10.1186/1472-6882-12-179
    Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1'S-1'-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links