Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Jamil SZMR, Rohani ER, Baharum SN, Noor NM
    3 Biotech, 2018 Aug;8(8):322.
    PMID: 30034986 DOI: 10.1007/s13205-018-1336-6
    Callus was induced from mangosteen (Garcinia mangostana L.) young purple-red leaves on Murashige and Skoog basal medium with various combinations of plant growth regulators. Murashige and Skoog medium with 4.44 µM 6-benzylaminopurine and 4.52 µM 2,4-dichlorophenoxyacetic acid was the best for friable callus induction. This friable callus was used for the initiation of cell suspension culture. The effects of different combinations of 6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid, carbon sources and inoculum sizes were tested. It was found that combination of 2.22 µM 6-benzylaminopurine + 2.26 µM 2,4-dichlorophenoxyacetic acid, glucose (30 g/l) and 1.5 g/50 ml inoculum size was the best for cell growth. Callus and cell suspension cultures were then treated either with 100 µM methyl jasmonate as an elicitor for 5 days, or 0.5 g/l casein hydrolysate as an organic supplement for 7 days. Metabolites were then extracted and profiled using liquid chromatography-time of flight mass spectrometry. Multivariate discriminant analyses revealed significant metabolite differences (P ≤ 0.05) for callus and suspension cells treated either with methyl jasmonate or casein hydrolysate. Based on MS/MS data, methyl jasmonate stimulated the production of an alkaloid (thalsimine) and fatty acid (phosphatidyl ethanolamine) in suspension cells while in callus, an alkaloid (thiacremonone) and glucosinolate (7-methylthioheptanaldoxime) was produced. Meanwhile casein hydrolysate stimulated the production of alkaloids such as 3ß,6ß-dihydroxynortropane and cis-hinokiresinol and triterpenoids such as schidigerasaponin and talinumoside in suspension cells. This study provides evidence on the potential of secondary metabolite production from in vitro culture of mangosteen.
  2. Nurdalila AA, Natnan ME, Baharum SN
    3 Biotech, 2020 Dec;10(12):544.
    PMID: 33240745 DOI: 10.1007/s13205-020-02543-4
    Mass mortality resulting from bacterial infection poses a major problem in the grouper aquaculture industry. The purpose of this study was to profile the metabolites released in challenged fish and to reconstruct the metabolic pathways of brown marble grouper (Epinephelus fuscoguttatus) in response to Vibrio vulnificus infection. Metabolite profiles from control and challenged treatment groups after feeding were determined using gas chromatography-mass spectrometry (GC-MS). Forty metabolites were identified from the GC-MS analysis. These metabolites comprised of amino acids, fatty acids, organic acids and carbohydrates. The profiles showed the highest percent area (33.1%) for leucine from the amino acid class in infected fish compared to the control treatment group (12.3%). Regarding the fatty acid class, a higher percent area of the metabolite 8,11-eicosadienoic acid (27.04%) was observed in fish infected with V. vulnificus than in the control treatment group (22.5%). Meanwhile, in the carbohydrate class, glucose (47.0%) was the metabolite in the carbohydrate class present at highest percentage in the control treatment group compared to infected fish (30.0%). Our findings highlight the importance of a metabolic analysis for understanding the changes of metabolites in E. fuscoguttatus in response to bacterial infections.
  3. Mohd-Sharif N, Shaibullah S, Givajothi V, Tan CS, Ho KL, Teh AH, et al.
    Acta Crystallogr F Struct Biol Commun, 2017 02 01;73(Pt 2):109-115.
    PMID: 28177322 DOI: 10.1107/S2053230X17001212
    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
  4. Baharum SN, Azizan KA
    Adv Exp Med Biol, 2018 11 2;1102:51-68.
    PMID: 30382568 DOI: 10.1007/978-3-319-98758-3_4
    Over the last decade, metabolomics has continued to grow rapidly and is considered a dynamic technology in envisaging and elucidating complex phenotypes in systems biology area. The advantage of metabolomics compared to other omics technologies such as transcriptomics and proteomics is that these later omics only consider the intermediate steps in the central dogma pathway (mRNA and protein expression). Meanwhile, metabolomics reveals the downstream products of gene and expression of proteins. The most frequently used tools are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Some of the common MS-based analyses are gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These high-throughput instruments play an extremely crucial role in discovery metabolomics to generate data needed for further analysis. In this chapter, the concept of metabolomics in the context of systems biology is discussed and provides examples of its application in human disease studies, plant responses towards stress and abiotic resistance and also microbial metabolomics for biotechnology applications. Lastly, a few case studies of metabolomics analysis are also presented, for example, investigation of an aromatic herbal plant, Persicaria minor metabolome and microbial metabolomics for metabolic engineering applications.
  5. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal Biochem, 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
  6. Baba MS, Mohamad Zin N, Ahmad SJ, Mazlan NW, Baharum SN, Ahmad N, et al.
    Antibiotics (Basel), 2021 Aug 12;10(8).
    PMID: 34439018 DOI: 10.3390/antibiotics10080969
    Streptomyces sp. has been known to be a major antibiotic producer since the 1940s. As the number of cases related to resistance pathogens infection increases yearly, discovering the biosynthesis pathways of antibiotic has become important. In this study, we present the streamline of a project report summary; the genome data and metabolome data of newly isolated Streptomyces SUK 48 strain are also analyzed. The antibacterial activity of its crude extract is also determined. To obtain genome data, the genomic DNA of SUK 48 was extracted using a commercial kit (Promega) and sent for sequencing (Pac Biosciences technology platform, Menlo Park, CA, USA). The raw data were assembled and polished using Hierarchical Genome Assembly Process 4.0 (HGAP 4.0). The assembled data were structurally predicted using tRNAscan-SE and rnammer. Then, the data were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) database and antiSMASH analysis. Meanwhile, the metabolite profile of SUK 48 was determined using liquid chromatography-mass spectrophotometry (LC-MS) for both negative and positive modes. The results showed that the presence of kanamycin and gentamicin, as well as the other 11 antibiotics. Nevertheless, the biosynthesis pathways of aurantioclavine were also found. The cytotoxicity activity showed IC50 value was at 0.35 ± 1.35 mg/mL on the cell viability of HEK 293. In conclusion, Streptomyces sp. SUK 48 has proven to be a non-toxic antibiotic producer such as auranticlavine and gentamicin.
  7. Akbar MA, Yusof NYM, Sahrani FK, Usup G, Ahmad A, Baharum SN, et al.
    Biology (Basel), 2021 Aug 25;10(9).
    PMID: 34571703 DOI: 10.3390/biology10090826
    The toxin-producing dinoflagellate Alexandrium minutum is responsible for the outbreaks of harmful algae bloom (HABs). It is a widely distributed species and is responsible for producing paralytic shellfish poisoning toxins. However, the information associated with the environmental adaptation pathway and toxin biosynthesis in this species is still lacking. Therefore, this study focuses on the functional characterization of A. minutum unigenes obtained from transcriptome sequencing using the Illumina Hiseq 4000 sequencing platform. A total of 58,802 (47.05%) unigenes were successfully annotated using public databases such as NCBI-Nr, UniprotKB, EggNOG, KEGG, InterPRO and Gene Ontology (GO). This study has successfully identified key features that enable A. minutum to adapt to the marine environment, including several carbon metabolic pathways, assimilation of various sources of nitrogen and phosphorus. A. minutum was found to encode homologues for several proteins involved in saxitoxin biosynthesis, including the first three proteins in the pathway of saxitoxin biosynthesis, namely sxtA, sxtG and sxtB. The comprehensive transcriptome analysis presented in this study represents a valuable resource for understanding the dinoflagellates molecular metabolic model regarding nutrient acquisition and biosynthesis of saxitoxin.
  8. Yusof NAM, Razali SA, Mohd Padzil A, Lau BYC, Baharum SN, Nor Muhammad NA, et al.
    Biology (Basel), 2022 Nov 01;11(11).
    PMID: 36358301 DOI: 10.3390/biology11111600
    (1) Background: Quorum sensing (QS) is the chemical communication between bacteria that sense chemical signals in the bacterial population to control phenotypic changes through the regulation of gene expression. The inhibition of QS has various potential applications, particularly in the prevention of bacterial infection. QS can be inhibited by targeting the LuxP, a periplasmic receptor protein that is involved in the sensing of the QS signaling molecule known as the autoinducer 2 (AI-2). The sensing of AI-2 by LuxP transduces the chemical information through the inner membrane sensor kinase LuxQ protein and activates the QS cascade. (2) Methods: An in silico approach was applied to design DNA aptamers against LuxP in this study. A method combining molecular docking and molecular dynamics simulations was used to select the oligonucleotides that bind to LuxP, which were then further characterized using isothermal titration calorimetry. Subsequently, the bioactivity of the selected aptamer was examined through comparative transcriptome analysis. (3) Results: Two aptamer candidates were identified from the ITC, which have the lowest dissociation constants (Kd) of 0.2 and 0.5 micromolar. The aptamer with the lowest Kd demonstrated QS suppression and down-regulated the flagellar-assembly-related gene expression. (4) Conclusions: This study developed an in silico approach to design an aptamer that possesses anti-QS properties.
  9. Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, et al.
    Biomed Pharmacother, 2024 Feb;171:116134.
    PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134
    Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
  10. Sundaraj Y, Abdullah H, Nezhad NG, Rodrigues KF, Sabri S, Baharum SN
    Curr Issues Mol Biol, 2023 Nov 10;45(11):8989-9002.
    PMID: 37998741 DOI: 10.3390/cimb45110564
    This study describes the cloning, expression and functional characterization of α-humulene synthase, responsible for the formation of the key aromatic compound α-humulene in agarwood originating from Aquilaria malaccensis. The partial sesquiterpene synthase gene from the transcriptome data of A. malaccensis was utilized for full-length gene isolation via a 3' RACE PCR. The complete gene, denoted as AmDG2, has an open reading frame (ORF) of 1671 bp and encodes for a polypeptide of 556 amino acids. In silico analysis of the protein highlighted several conserved motifs typically found in terpene synthases such as Asp-rich substrate binding (DDxxD), metal-binding residues (NSE/DTE), and cytoplasmic ER retention (RxR) motifs at their respective sites. The AmDG2 was successfully expressed in the E. coli:pET-28a(+) expression vector whereby an expected band of about 64 kDa in size was detected in the SDS-PAGE gel. In vitro enzyme assay using substrate farnesyl pyrophosphate (FPP) revealed that AmDG2 gave rise to two sesquiterpenes: α-humulene (major) and β-caryophyllene (minor), affirming its identity as α-humulene synthase. On the other hand, protein modeling performed using AlphaFold2 suggested that AmDG2 consists entirely of α-helices with short connecting loops and turns. Meanwhile, molecular docking via AutoDock Vina (Version 1.5.7) predicted that Asp307 and Asp311 act as catalytic residues in the α-humulene synthase. To our knowledge, this is the first comprehensive report on the cloning, expression and functional characterization of α-humulene synthase from agarwood originating from A. malaccensis species. These findings reveal a deeper understanding of the structure and functional properties of the α-humulene synthase and could be utilized for metabolic engineering work in the future.
  11. Mazlan O, Aizat WM, Aziz Zuddin NS, Baharum SN, Noor NM
    Data Brief, 2018 Dec;21:2221-2223.
    PMID: 30555858 DOI: 10.1016/j.dib.2018.11.072
    Metabolic regulation is important during seed germination for the establishment of seedling. The germination strategy of mangosteen (Garcinia mangostana L.) seed is thought to be unique due to its recalcitrant characteristic (sensitive to coldness and drying). To investigate the metabolic changes during seed germination, we performed metabolomics analysis on germinating mangosteen seed sown after zero, one, three, five, seven and nine days. Sampled mangosteen seeds were subjected to methanol extraction prior analysis using Liquid Chromatography-Time of Flight-Mass Spectrometry (LC-TOF-MS). MS data were further analyzed using ProfileAnalysis (version 2.1). This is one of the earliest reports in metabolite identification and profiling of mangosteen seed at different germination stages. This data article refers to the article entitled "Metabolite profiling of mangosteen seed germination highlights metabolic changes related to carbon utilization and seed protection" (Mazlan et al., 2019) [1].
  12. Mamat SF, Azizan KA, Baharum SN, Noor NM, Aizat WM
    Data Brief, 2018 Apr;17:1074-1077.
    PMID: 29876463 DOI: 10.1016/j.dib.2018.02.033
    Fruit ripening is a complex phenomenon involving a series of biochemical, physiological and organoleptic changes. Ripening process in mangosteen (Garcinia mangostana Linn.) is unique of which the fruit will only ripen properly if harvested during its middle stage (emergence of purple/pink colour) but not earlier (green stage). The knowledge on the molecular mechanism and regulation behind this phenomenon is still limited. Hence, electrospray ionization liquid chromatography mass spectrometry (ESI-LC-MS) based metabolomics analysis was applied to determine the metabolome of mangosteen ripening. Specifically, mangosteen pericarp, aril and seed were collected at four different ripening stages (stage 0: green, stage 2: yellowish with pink patches, stage 4: brownish red and stage 6: dark purple) and subjected to metabolite profiling analysis. The data provided in this article have been deposited to the EMBL-EBI MetaboLights database (DOI: 10.1093/nar/gks1004. PubMed PMID: 23109552) with the identifier MTBLS595. The complete dataset can be accessed here https://www.ebi.ac.uk/metabolights/MTBLS595.
  13. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
  14. Mazlan O, Aizat WM, Baharum SN, Azizan KA, Noor NM
    Data Brief, 2018 Dec;21:548-551.
    PMID: 30370325 DOI: 10.1016/j.dib.2018.10.025
    Garcinia mangostana L. (mangosteen) seed is recalcitrant, prone to low temperature and drying which limit its long-term storage. Therefore, it is imperative to understand the metabolic changes throughout its development, to shed some light into the recalcitrant nature of this seed. We performed metabolomics analysis on mangosteen seed at different stages of development; six, eight, ten, twelve and fourteen weeks after anthesis. Seed samples were subjected to methanol extraction prior analysis using liquid chromatography - mass spectrometry (LC-MS). The MS data acquired were analyzed using ProfileAnalysis (version 2.1). This data article refers to the article entitled "Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds" (Mazlan et al., 2018) [1].
  15. Rosli MAF, Azizan KA, Baharum SN, Goh HH
    Data Brief, 2017 Oct;14:295-297.
    PMID: 28795107 DOI: 10.1016/j.dib.2017.07.068
    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.
  16. Ilias IA, Airianah OB, Baharum SN, Goh HH
    Data Brief, 2017 Dec;15:320-323.
    PMID: 29214193 DOI: 10.1016/j.dib.2017.09.050
    Expansin increases cell wall extensibility to allow cell wall loosening and cell expansion even in the absence of hydrolytic activity. Previous studies showed that excessive overexpression of expansin gene resulted in defective growth (Goh et al., 2014; Rochange et al., 2001) [1,2] and altered cell wall chemical composition (Zenoni et al., 2011) [3]. However, the molecular mechanism on how the overexpression of non-enzymatic cell wall protein expansin can result in widespread effects on plant cell wall and organ growth remains unclear. We acquired transcriptomic data on previously reported transgenic Arabidopsis line (Goh et al., 2014) [1] to investigate the effects of overexpressing a heterologus cucumber expansin gene (CsEXPA1) on the global gene expression pattern during early and late phases of etiolated hypocotyl growth.
  17. Jazamuddin FM, Aizat WM, Goh HH, Low CF, Baharum SN
    Data Brief, 2018 Feb;16:466-469.
    PMID: 29255779 DOI: 10.1016/j.dib.2017.11.024
    Vibriosis disease by Vibrio spp. greatly reduced productivity of aquaculture, such as brown-marbled grouper (Epinephelus fuscoguttatus), which is an economically important fish species in Malaysia. Preventive measures and immediate treatment are critical to reduce the mortality of E. fuscoguttatus from vibriosis. To investigate the molecular mechanisms associated with immune response and host-bacteria interaction, a transcriptomic analysis was performed to compare between healthy and Vibrio-infected groupers. This permits the discovery of immune-related genes, specifically the resistance genes upon infection. Herein, we provide the raw transcriptome data from Illumina HiSeq. 4000 that have been deposited into NCBI SRA database with the BioProject accession number PRJNA396437. A total of 493,403,076 raw sequences of 74.5 Gb were obtained. Trimming of the raw data produced 437,186,232 clean reads of ~58 Gb. These datasets will be useful to elucidate the defence mechanisms of E. fuscoguttatus against Vibrio vulnificus infection for future development of effective prevention and treatment of vibriosis.
  18. Bunawan H, Bunawan SN, Baharum SN, Noor NM
    PMID: 26413127 DOI: 10.1155/2015/714158
    Sauropus androgynus L. Merr. is one of the most popular herbs in South Asia, Southeast Asia, and China where it was known as a slimming agent until two outbreaks of pulmonary dysfunction were reported in Taiwan and Japan in 1995 and 2005, respectively. Several studies described that the excessive consumption of Sauropus androgynus could cause drowsiness, constipation, and bronchiolitis obliterans and may lead to respiratory failure. Interestingly, this herb has been used in Malaysia and Indonesia in cooking and is commonly called the "multigreen" or "multivitamin" plant due to its high nutritive value and inexpensive source of dietary protein. The plant is widely used in traditional medicine for wound healing, inducing lactation, relief of urinary disorders, as an antidiabetic cure and also fever reduction. Besides these medicinal uses, the plant can also be used as colouring agent in food. This review will explore and compile the fragmented knowledge available on the botany, ethnobotany, chemical constitutes, pharmacological properties, and toxicological aspects of this plant. This comprehensive review will give readers the fundamental, comprehensive, and current knowledge regarding Sauropus androgynus L. Merr.
  19. Bunawan H, Amin NM, Bunawan SN, Baharum SN, Mohd Noor N
    PMID: 24772185 DOI: 10.1155/2014/902734
    Ficus deltoidea Jack (Moraceae) has had a long history of use in traditional medicine among the Malays to alleviate and heal ailments such as sores, wounds, and rheumatism and as an after-birth tonic and an antidiabetic drug. Modern pharmacological studies demonstrated that this plant has a wide variety of beneficial attributes for human health. Despite its importance, a review of this species has not been published in the scientific literature to date. Here, we review and summarize the historic and current literature concerning the botany, traditional uses, phytochemistry, pharmacological effects, and toxicity of this wonder plant. This summary could be beneficial for future research aiming to exploit the therapeutic potential of this useful, medicinal species.
  20. Nurdalila AA, Mayalvanan Y, Baharum SN
    Fish Physiol Biochem, 2019 Jun;45(3):1203-1215.
    PMID: 30915615 DOI: 10.1007/s10695-019-00633-6
    In this study, we report the starvation effect and vibriosis infection on a tropical fish, the tiger grouper (Epinephelus fuscoguttatus). The tiger groupers were infected with Vibrio vulnificus for 21 days. Gas chromatography-mass spectrometry combined with multivariate analysis was used to assess the variation in metabolite profiles of E. fuscoguttatus. Metabolite productions in infected fishes were significantly influenced by fatty acid production. The Omega 9 (ω-9) was abundant under the challenged conditions compared to Omega 3 (ω-3) and Omega 6 (ω-6). A total of six fatty acids from the ω-9 group were detected in high concentration in the infected fishes compared to the control groupers. These metabolites are Oleic acid, Palmitoleic acid, 6,9-Octadecenoic acid, 8,11-Eicosadienoic acid, cis-Erucic acid and 5,8,11-Eicosatrienoic acid. The production of ω-9 differed significantly (p ≤ 0.001) in the challenged samples. The detected ω-9 compounds were quantified based on three different extraction techniques with Supelco 37-component FAME mix (Supelco, USA). The highest concentration of ω-9 groups compared to the other fatty acids detected is 1320.79 mg/4 g and the lowest is 939 mg/4 g in challenged-starved; meanwhile, in challenged-fed, the highest concentration detected is 1220.87 mg/4 g and the lowest is 917.25 mg/4 g. These changes demonstrate that ω-9 can be used as a biomarker of infection in fish.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links