Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Azhar NA, Abu Bakar SA, Citartan M, Ahmad NH
    World J Hepatol, 2023 Mar 27;15(3):393-409.
    PMID: 37034237 DOI: 10.4254/wjh.v15.i3.393
    BACKGROUND: The demand for the development of cancer nanomedicine has increased due to its great therapeutic value that can overcome the limitations of conventional cancer therapy. However, the presence of various bioactive compounds in crude plant extracts used for the synthesis of silver nanoparticles (AgNPs) makes its precise mechanisms of action unclear.

    AIM: To assessed the mRNA transcriptome profiling of human HepG2 cells exposed to Catharanthus roseus G. Don (C. roseus)-AgNPs.

    METHODS: The proliferative activity of hepatocellular carcinoma (HepG2) and normal human liver (THLE3) cells treated with C. roseusAgNPs were measured using MTT assay. The RNA samples were extracted and sequenced using BGIseq500 platform. This is followed by data filtering, mapping, gene expression analysis, differentially expression genes analysis, Gene Ontology analysis, and pathway analysis.

    RESULTS: The mean IC50 values of C. roseusAgNPs on HepG2 was 4.38 ± 1.59 μg/mL while on THLE3 cells was 800 ± 1.55 μg/mL. Transcriptome profiling revealed an alteration of 296 genes. C. roseusAgNPs induced the expression of stress-associated genes such as MT, HSP and HMOX-1. Cellular signalling pathways were potentially activated through MAPK, TNF and TGF pathways that are responsible for apoptosis and cell cycle arrest. The alteration of ARF6, EHD2, FGFR3, RhoA, EEA1, VPS28, VPS25, and TSG101 indicated the uptake of C. roseus-AgNPs via both clathrin-dependent and clathrin-independent endocytosis.

    CONCLUSION: This study provides new insights into gene expression study of biosynthesised AgNPs on cancer cells. The cytotoxicity effect is mediated by the aberrant gene alteration, and more interestingly the unique selective antiproliferative properties indicate the C. roseusAgNPs as an ideal anticancer candidate.

  2. Mousavi SM, Naghsh A, Abu-Bakar SA
    J Digit Imaging, 2014 Dec;27(6):714-29.
    PMID: 24871349 DOI: 10.1007/s10278-014-9700-5
    The ever-growing numbers of medical digital images and the need to share them among specialists and hospitals for better and more accurate diagnosis require that patients' privacy be protected. As a result of this, there is a need for medical image watermarking (MIW). However, MIW needs to be performed with special care for two reasons. Firstly, the watermarking procedure cannot compromise the quality of the image. Secondly, confidential patient information embedded within the image should be flawlessly retrievable without risk of error after image decompressing. Despite extensive research undertaken in this area, there is still no method available to fulfill all the requirements of MIW. This paper aims to provide a useful survey on watermarking and offer a clear perspective for interested researchers by analyzing the strengths and weaknesses of different existing methods.
  3. Teng TS, Ishak NL, Subha ST, Bakar SA
    EXCLI J, 2019;18:223-228.
    PMID: 31217785 DOI: 10.17179/excli2018-1971
    CSF leak in penetrating skull base injury is relatively rare compared to close head injury involving skull base fracture. We report a 5-year-old boy presented with epistaxis and impacted pencil into the left nostril. The child was hemodynamically stable without any neurological deficit. Intraoperatively, there was a nasal septal defect posteriorly with anterior skull base fracture associated with CSF leak. The pencil was removed from the left nostril and the CSF leak was repaired using harvested abdominal fat under the same setting. Computed Tomography (CT) of the brain showed right cribriform plate fracture with small pneumocranium. Postoperatively, a prophylactic antibiotic was given for seven days and he was discharged well. Subsequent clinic visits up to one-year postoperative period showed no recurrence of the CSF leak. History taking, physical examination and CT imaging give valuable diagnostic values in managing the penetrating skull base injury. Early intervention for removal of the foreign body and repair of the CSF leak is advocated to prevent catastrophic complication.
  4. Tiong V, Hassandarvish P, Bakar SA, Mohamed NA, Wan Sulaiman WS, Baharom N, et al.
    Sci Rep, 2021 10 15;11(1):20502.
    PMID: 34654867 DOI: 10.1038/s41598-021-99866-w
    The COVID-19 is difficult to contain due to its high transmissibility rate and a long incubation period of 5 to 14 days. Moreover, more than half of the infected patients were young and asymptomatic. Virus transmission through asymptomatic patients is a major challenge to disease containment. Due to limited treatment options, preventive measures play major role in controlling the disease spread. Gargling with antiseptic formulation may have potential role in eliminating the virus in the throat. Four commercially available mouthwash/gargle formulations were tested for virucidal activity against SARS-CoV-2 in both clean (0.3 g/l BSA) and dirty (0.3 g/l BSA + 3 mL/L human erythrocytes) conditions at time points 30 and 60 s. The virus was isolated and propagated in Vero E6 cells. The cytotoxicity of the products to the Vero E6 was evaluated by kill time assay based on the European Standard EN14476:2013/FprA1:2015 protocol. Virus titres were calculated as 50% tissue culture infectious dose (TCID50/mL) using the Spearman-Karber method. A reduction in virus titer of 4 log10 corresponds to an inactivation of ≥ 99.99%. Formulations with cetylperidinium chloride, chlorhexidine and hexitidine achieved > 4 log10 reduction in viral titres when exposed within 30 s under both clean and dirty conditions. Thymol formulations achieved only 0.5 log10 reduction in viral titres. In addition, salt water was not proven effective. Gargle formulations with cetylperidinium chloride, chlorhexidine and hexetidine have great potential in reducing SAR-CoV-2 at the source of entry into the body, thus minimizing risk of transmission of COVID-19.
  5. Altowayti WAH, Algaifi HA, Bakar SA, Shahir S
    Ecotoxicol Environ Saf, 2019 May 15;172:176-185.
    PMID: 30708229 DOI: 10.1016/j.ecoenv.2019.01.067
    Globally, the contamination of water with arsenic is a serious health issue. Recently, several researches have endorsed the efficiency of biomass to remove As (III) via adsorption process, which is distinguished by its low cost and easy technique in comparison with conventional solutions. In the present work, biomass was prepared from indigenous Bacillus thuringiensis strain WS3 and was evaluated to remove As (III) from aqueous solution under different contact time, temperature, pH, As (III) concentrations and adsorbent dosages, both experimentally and theoretically. Subsequently, optimal conditions for As (III) removal were found; 6 (ppm) As (III) concentration at 37 °C, pH 7, six hours of contact time and 0.50 mg/ml of biomass dosage. The maximal As (III) loading capacity was determined as 10.94 mg/g. The equilibrium adsorption was simulated via the Langmuir isotherm model, which provided a better fitting than the Freundlich model. In addition, FESEM-EDX showed a significant change in the morphological characteristic of the biomass following As (III) adsorption. 128 batch experimental data were taken into account to create an artificial neural network (ANN) model that mimicked the human brain function. 5-7-1 neurons were in the input, hidden and output layers respectively. The batch data was reserved for training (75%), testing (10%) and validation process (15%). The relationship between the predicted output vector and experimental data offered a high degree of correlation (R2 = 0.9959) and mean squared error (MSE; 0.3462). The predicted output of the proposed model showed a good agreement with the batch work with reasonable accuracy.
  6. Hearn AJ, Ross J, Bernard H, Bakar SA, Hunter LT, Macdonald DW
    PLoS One, 2016;11(3):e0151046.
    PMID: 27007219 DOI: 10.1371/journal.pone.0151046
    The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches.
  7. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
  8. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, et al.
    J Colloid Interface Sci, 2019 Jun 01;545:184-194.
    PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012
    HYPOTHESIS: The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites.

    EXPERIMENTS: New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS).

    FINDINGS: Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.

  9. Azhar NA, Ghozali SZ, Abu Bakar SA, Lim V, Ahmad NH
    Toxicol In Vitro, 2020 Sep;67:104910.
    PMID: 32526345 DOI: 10.1016/j.tiv.2020.104910
    Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.
  10. Mohamed A, Ardyani T, Bakar SA, Sagisaka M, Umetsu Y, Hussin MRM, et al.
    Carbohydr Polym, 2018 Dec 01;201:48-59.
    PMID: 30241844 DOI: 10.1016/j.carbpol.2018.08.040
    A facile electrochemical exfoliation method was established to efficiently prepare conductive paper containing reduced graphene oxide (RGO) with the help of single chain anionic surfactant ionic liquids (SAILs). The surfactant ionic liquids are synthesized from conventional organic surfactant anions and a 1-butyl-3-methyl-imidazolium cation. For the first time the combination of SAILs and cellulose was used to directly exfoliate graphite. The ionic liquid 1-butyl-3-methyl-imidazolium dodecylbenzenesulfonate (BMIM-DBS) was shown to have notable affinity for graphene, demonstrating improved electrical properties of the conductive cellulose paper. The presence of BMIM-DBS in the system promotes five orders of magnitude enhancement of the paper electrical conductivity (2.71 × 10-5 S cm-1) compared to the native cellulose (1.97 × 10-10 S cm-1). A thorough investigation using electron microscopy and Raman spectroscopy highlights the presence of uniform graphene incorporated inside the matrices. Studies into aqueous aggregation behavior using small-angle neutron scattering (SANS) point to the ability of this compound to act as a bridge between graphene and cellulose, and is responsible for the enhanced exfoliation level and stabilization of the resulting dispersion. The simple and feasible process for producing conductive paper described here is attractive for the possibility of scaling-up this technique for mass production of conductive composites containing graphene or other layered materials.
  11. Idris NJ, Bakar SA, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, et al.
    Environ Sci Pollut Res Int, 2021 Feb;28(6):6966-6979.
    PMID: 33025441 DOI: 10.1007/s11356-020-10904-y
    In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)-based photocatalysts were hybridized with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via sol-gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with 1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then incorporated onto sand/ZnO/TiO2 nanocomposite-based photocatalysts through immersion. Various sand/ZnO/TiO2-based photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement, the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the photocatalytic performance.
  12. Hassan H, Bakar SA, Halim KN, Idris J, Saad FF, Nordin AJ
    Curr Radiopharm, 2016;9(2):121-7.
    PMID: 26239237
    BACKGROUND AND OBJECTIVE: 18F-Fluorocholine has been suggested as one of the reputable imaging tracers for diagnosis of prostate tumour in Positron Emission Tomography / Computed Tomography (PET/CT) modality. Nevertheless, it has never been synthesised in Malaysia. We acknowledged that the major problem with 18F-Fluorocholine is due to its relatively low radiochemical yield at the end of synthesis (EOS). Therefore, this article presents improved 18FFluorocholine radiochemical yields after carrying out optimisation on azeotropic drying of 18F-Fluorine.

    METHODS: In the previous study, the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine in the reactor was conducted at atmospheric pressure (0 atm) and shorter duration time. In this study, however, the azeotropic drying of non-carried-added (n.c.a) 18FFluorine was made at a high vacuum pressure (- 0.65 to - 0.85 bar) with an additional time of 30 seconds. At the end of the synthesis, the mean radiochemical yield was statistically compared between the two azeotropic drying conditions so as to observe whether the improvement made was significant to the radiochemical yield.

    RESULTS: From the paired sample t-test analysis, the improvement done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine was statistically significant (p < 0.05). With the improvement made, the 18F-Fluorcholine radiochemical yield was found to have increase by one fold.

    CONCLUSION: Improved 18F-Fluorocholine radiochemical yields were obtained after the improvement had been done to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine. It was also observed that improvement made to the azeotropic drying of non-carrier-added (n.c.a) 18F-Fluorine did not affect the 18F-Fluorocholine quality control analysis.

  13. Algaifi HA, Mustafa Mohamed A, Alsuhaibani E, Shahidan S, Alrshoudi F, Huseien GF, et al.
    Polymers (Basel), 2021 Aug 16;13(16).
    PMID: 34451289 DOI: 10.3390/polym13162750
    Although free-cement-based alkali-activated paste, mortar, and concrete have been recognised as sustainable and environmental-friendly materials, a considerable amount of effort is still being channeled to ascertain the best binary or ternary binders that would satisfy the requirements of strength and durability as well as environmental aspects. In this study, the mechanical properties of alkali-activated mortar (AAM) made with binary binders, involving fly ash (FA) and granulated blast-furnace slag (GBFS) as well as bottle glass waste nano-silica powder (BGWNP), were opti-mised using both experimentally and optimisation modelling through three scenarios. In the first scenario, the addition of BGWNP varied from 5% to 20%, while FA and GBFS were kept constant (30:70). In the second and third scenarios, BGWNP (5-20%) was added as the partial replacement of FA and GBFS, separately. The results show that the combination of binary binders (FA and GBFS) and BGWNP increased AAM's strength compared to that of the control mixture for all scenarios. In addition, the findings also demonstrated that the replacement of FA by BGWNP was the most significant, while the effect of GBFS replacement by BGWNP was less significant. In particular, the highest improvement in compressive strength was recorded when FA, GBFS, and BGWNP were 61.6%, 30%, and 8.4%, respectively. Furthermore, the results of ANOVA (p values < 0.0001 and high F-values) as well as several statistical validation methods (R > 0.9, RAE < 0.1, RSE < 0.013, and RRSE < 0.116) confirmed that all the models were robust, reliable, and significant. Similarly, the data variation was found to be less than 5%, and the difference between the predicted R2 and adj. R2 was very small (<0.2), thus confirming that the proposed non-linear quadratic equations had the capability to predict for further observation. In conclusion, the use of BGWNP in AAM could act as a beneficial and sustainable strategy, not only to address environmental issues (e.g., landfill) but to also enhance strength properties.
  14. Nasir MH, Bhassu S, Mispan MS, Bakar SA, Jing KJ, Omar H
    Zoolog Sci, 2022 Dec;39(6):554-561.
    PMID: 36495490 DOI: 10.2108/zs210093
    Rats (Rattus species) are the most notorious vertebrate pests in Malaysian oil palm plantations. Although many studies have been conducted on Asian rats, little attention has been paid to their species composition and phylogenetic relationships in oil palm plantations in Peninsular Malaysia. We determined the mitochondrial cytochrome oxidase subunit I (COI) gene sequence (708 bp) for 216 individual rats collected from five oil palm plantations in Peninsular Malaysia. Phylogenetic analysis in conjunction with comparison with sequences from the nucleotide sequence database revealed five distinct lineages in the Malaysian oil plantations: Rattus tiomanicus, Rattus argentiventer, Rattus exulans, Rattus tanezumi, and a taxon corresponding to the Malayan house rat, which was most frequently observed (∼50%). The last taxon has traditionally been classified as a synonym of Rattus rattus (Rattus rattus diardii) or Rattus tanezumi, but our phylogenetic analysis placed it as an independent lineage, which is not particularly closely related to R. rattus or R. tanezumi, and which we refer to as Rattus diardii. The construction of the network showed that there is considerable genetic variation within the lineages of R. diardii and R tiomanicus, suggesting that these two species are native to the Malay Peninsula.
  15. Said MA, Sulaiman AH, Habil MH, Das S, Bakar AK, Yusoff RM, et al.
    Singapore Med J, 2012 Dec;53(12):801-7.
    PMID: 23268153
    INTRODUCTION:This study aimed to determine the prevalence of metabolic syndrome and risk of coronary heart disease (CHD) in patients with schizophrenia receiving antipsychotics in Malaysia.
    METHODS:This cross-sectional study, conducted at multiple centres, involved 270 patients who fulfilled the Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV-TR diagnostic criteria for schizophrenia, were on antipsychotic medications for at least one year, and were screened for metabolic syndrome. Patients receiving mood stabilisers were excluded. Metabolic syndrome was defined according to the National Cholesterol Education Program ATP III criteria modified for Asian waist circumference. Risk for cardiovascular disease was assessed by using Framingham function (all ten-year CHD events).
    RESULTS:The prevalence of metabolic syndrome was 46.7% (126/270). Among all the antipsychotics used, atypical antipsychotics (monotherapy) were most commonly used in both the metabolic and non-metabolic syndrome groups (50.8% vs. 58.3%). The ten-year risk for CHD was significantly higher in patients with metabolic syndrome. The proportion of patients with high/very high risk for CHD (Framingham ≥ 10%) was greater in patients with metabolic syndrome than in those with non-metabolic syndrome (31.5% vs. 11.0%, odds ratio 3.9, 95% confidence interval 2.0-7.6; p < 0.001). The mean body mass index was higher in patients with metabolic syndrome than in those without (29.4 ± 5.1 kg/m2 vs. 25.0 ± 5.6 kg/m2; p < 0.001).
    CONCLUSION:Patients with schizophrenia receiving antipsychotics in Malaysia have a very high incidence of metabolic syndrome and increased cardiovascular risk. Urgent interventions are needed to combat these problems in patients.
  16. Yamin NAAA, Basaruddin KS, Bakar SA, Salleh AF, Som MHM, Bakar AHA
    Acta Bioeng Biomech, 2022;24(1):67-74.
    PMID: 38314464
    PURPOSE: The present study aims to investigate the effect of incline and decline walking on ground and joint reaction forces (JRF) of lower extremity and plantar fascia strain (PFS) under certain surface inclination angles.

    METHODS: Twenty-three male subjects walked on a customized platform with four different surface inclinations (i.e., 0, 5, 7.5 and 10°) with inclined and declined directions. The motion of the ten reflective markers was captured using Qualysis motion capture system (Qualysis, Gothenburg, Sweden) and exported to a visual three-dimensional (3D) software (C-motion, Germantown, USA) in order to analyze the GRF, JRF and PFS.

    RESULTS: The results found that the peak vertical GRF is almost consistent for 0 and 5° inclination slope but started to decrease at 7.5° onwards during decline walking. The most affected JRF was found on knee at medial-lateral direction even as low as 5 to 10° inclination for both walking conditions. Furthermore, the findings also show that the JRF of lower extremity was more affected during declined walking compared to inclined walking based on the number of significant differences observed in each inclination angle. The PFS was found increased with the increase of surface inclination.

    CONCLUSIONS: The findings could provide a new insight on the relationship of joint reaction forces and strain parameter in response to the incline and decline walking. It would benefit in providing a better precaution that should be considered during hiking activity, especially in medial-lateral direction in order to prevent injury or fall risk.

  17. Ali LA, Jemon K, Latif NA, Bakar SA, Alwi SSS
    Biomedicine (Taipei), 2022;12(3):1-11.
    PMID: 36381191 DOI: 10.37796/2211-8039.1326
    Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic syndrome that is rapidly increasing across the world, especially in Malaysia. Leptin plays a vital role in the regulation of metabolism through its effect on peripheral tissues. G2548A polymorphism in the LEP gene promoter has been associated with insulin resistance, leptin, and type 2 diabetes mellitus across different population, but has not been inclusively reported within the Malaysian population.

    Objective: Thus, our study aimed to investigate the impact of G2548A polymorphism on serum leptin levels and insulin resistance among Malaysian T2DM patients.

    Methods: This case-control study involved 150 T2DM patients and 150 non-diabetic volunteers from ethnic Malays, Chinese and Indians. Genotyping of G2548A polymorphism was carried out using PCR-RFLP. Serum leptin and insulin levels were determined via ELISA. ANOVA and Chi-square tests were used to determine the distribution of genotypes and allelic frequencies based on serum leptin and insulin levels.

    Results: Frequency of AA genotype and A allele of G2548A variant were significantly (P < 0.05) higher in T2DM patients of Malay and Indian ethnicities (4%, 35%, and 36%, 57%, respectively) as compared to the control groups (0%, 22%, and 18%, 35%, respectively). Fasting serum leptin levels were significantly (P < 0.001) higher in T2DM patients compared to non-diabetic subjects (166.78 pg/ml, 101.94 pg/ml, respectively). Additionally, elevated serum leptin, insulin levels, and BMI in diabetic patients were found to be associated with the AA genotype of this variant, compared to GG, and GA genotypes (P < 0.05).

    Conclusion: Our findings suggest a significant association between G2548A polymorphism among Malaysian T2DM subjects, particularly among Malay and Indian ethnic groups. Moreover, the A allele frequency of the G2548A variant significantly increased the risk of T2DM and is significantly associated with increased serum leptin, insulin levels, and elevated BMI.

  18. Mo SY, Lai OM, Chew BH, Ismail R, Bakar SA, Jabbar NA, et al.
    Eur J Nutr, 2019 Aug;58(5):1873-1885.
    PMID: 29872922 DOI: 10.1007/s00394-018-1738-6
    PURPOSE: We aim to investigate the postprandial effects of palm olein (PO) and chemically interesterified palm olein (IPO) with different proportions of palmitic acid at the sn-2 position using high oleic sunflower oil (HOS) as control fat on concentrations of gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters in type 2 diabetic (T2D) subjects.

    METHODS: Using a randomised double-blind crossover design, 21 (men = 6, women = 15) T2D subjects consumed test meals (3.65 MJ) consisting of a high fat muffin (containing 50 g test fats provided as PO, IPO or HOS) and a milkshake. Postprandial changes in gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters after meals were analysed. Some of the solid fractions of the IPO were removed and thus the fatty acid composition of the PO and IPO was not entirely equal (PO vs IPO: palmitate 39.8 vs 38.7; oleate 43.6 vs 45.1). PO, IPO and HOS contained 9.7, 38.9 and 0.2 g/100 g total fatty acids of palmitic acid at the sn-2 position, respectively. At 37 °C, IPO contained 4.2% SFC whereas PO and HOS were completely melted.

    RESULTS: Our novel observation shows that the incremental area under curve (iAUC) 0-6 h of plasma GIP concentration was on average 16% lower following IPO meal compared with PO and HOS (P 

  19. Mohamat R, Bakar SA, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72446-72462.
    PMID: 37170051 DOI: 10.1007/s11356-023-27207-7
    Exposure of synthetic dye, such as methylene blue (MB), in water bodies led to a serious threat to living things because they are toxic and non-degradable. Amongst the introduced dye removal methods, membrane separation process can be considered a powerful technique for treating dye contamination. However, this method commonly suffered from drawbacks, such as short membrane lifetime, low permeability and selectivity. To overcome these issues, graphene oxide (GO) and titanium dioxide (TiO2) were used as additives to fabricate polyethersulfone (PES)- and polyvinylidene fluoride (PVDF)-based hybrid membranes via non-solvent-induced phase separation method. Prior to membrane fabrication, GO was synthesised via electrochemical exfoliation method assisted by customised triple-tail surfactant. The potential of PES- and PVDF-based hybrid membranes for wastewater treatment has been discussed widely. However, direct comparison between these two polymeric membranes is not critically discussed for MB dye separation application yet. Therefore, this study is aimed at evaluating the performance of different types of polymers (e.g. PES and PVDF) in terms of membrane morphology, properties, dye rejection and antifouling ability. Results showed that the incorporation of GO and TiO2 alters the morphology of the fabricated membranes and affects dye rejection further, as well as their antifouling performance. In contrast with pristine membrane, PES-GO/TiO2 and PVDF-GO/TiO2 possessed high hydrophilicity, as indicated by their low contact angle (67.38° and 62.12°, respectively). Based on this study, PVDF-GO/TiO2 showed higher porosity value (94.88%), permeability (87.32 L/m2hMPa) and MB rejection rate (92.63%), as well as flux recovery ratio value of > 100% as compared with others. Overall, the incorporation of GO and TiO2 with PVDF polymer are proven to be effective hybrid materials of membrane fabrication for dye rejection application in the near future. The polymer material's intrinsic properties can affect the attributes of the fabricated membrane.
  20. Kamari A, Putra WP, Yusoff SN, Ishak CF, Hashim N, Mohamed A, et al.
    Bull Environ Contam Toxicol, 2015 Dec;95(6):790-5.
    PMID: 26395356 DOI: 10.1007/s00128-015-1650-1
    Immobilisation of heavy metals in a 30-year old active scrap metal yard soil using three waste materials, namely coconut tree sawdust (CTS), sugarcane bagasse (SB) and eggshell (ES) was investigated. The contaminated soil was amended with amendments at application rates of 0 %, 1 % and 3 % (w/w). The effects of amendments on metal accumulation in water spinach (Ipomoea aquatica) and soil metal bioavailability were studied in a pot experiment. All amendments increased biomass yield and reduced metal accumulation in the plant shoots. The bioconcentration factor and translocation factor values of the metals were in the order of Zn > Cu > Pb. The addition of ES, an alternative source of calcium carbonate (CaCO3), has significantly increased soil pH and resulted in marked reduction in soil metal bioavailability. Therefore, CTS, SB and ES are promising low-cost immobilising agents to restore metal contaminated land.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links