Displaying all 3 publications

Abstract:
Sort:
  1. Ali ME, Hashim U, Mustafa S, Man YB, Yusop MH, Bari MF, et al.
    Nanotechnology, 2011 May 13;22(19):195503.
    PMID: 21430321 DOI: 10.1088/0957-4484/22/19/195503
    We used 40 ± 5 nm gold nanoparticles (GNPs) as colorimetric sensor to visually detect swine-specific conserved sequence and nucleotide mismatch in PCR-amplified and non-amplified mitochondrial DNA mixtures to authenticate species. Colloidal GNPs changed color from pinkish-red to gray-purple in 2 mM PBS. Visually observed results were clearly reflected by the dramatic reduction of surface plasmon resonance peak at 530 nm and the appearance of new features in the 620-800 nm regions in their absorption spectra. The particles were stabilized against salt-induced aggregation upon the adsorption of single-stranded DNA. The PCR products, without any additional processing, were hybridized with a 17-base probe prior to exposure to GNPs. At a critical annealing temperature (55 °C) that differentiated matched and mismatched base pairing, the probe was hybridized to pig PCR product and dehybridized from the deer product. The dehybridized probe stuck to GNPs to prevent them from salt-induced aggregation and retained their characteristic red color. Hybridization of a 27-nucleotide probe to swine mitochondrial DNA identified them in pork-venison, pork-shad and venison-shad binary admixtures, eliminating the need of PCR amplification. Thus the assay was applied to authenticate species both in PCR-amplified and non-amplified heterogeneous biological samples. The results were determined visually and validated by absorption spectroscopy. The entire assay (hybridization plus visual detection) was performed in less than 10 min. The LOD (for genomic DNA) of the assay was 6 µg ml(-1) swine DNA in mixed meat samples. We believe the assay can be applied for species assignment in food analysis, mismatch detection in genetic screening and homology studies between closely related species.
  2. Saad B, Bari MF, Saleh MI, Ahmad K, Talib MK
    J Chromatogr A, 2005 May 06;1073(1-2):393-7.
    PMID: 15909546
    A reversed-phased HPLC method that allows the separation and simultaneous determination of the preservatives benzoic (BA) and sorbic acids (SA), methyl- (MP) and propylparabens (PP) is described. The separations were effected by using an initial mobile phase of methanol-acetate buffer (pH 4.4) (35:65) to elute BA, SA and MP and changing the mobile phase composition to methanol-acetate buffer (pH 4.4) (50:50) thereafter. The detector wavelength was set at 254 nm. Under these conditions, separation of the four components was achieved in less than 23 min. Analytical characteristics of the separation such as limit of detection, limit of quantification, linear range and reproducibility were evaluated. The developed method was applied to the determination of 67 foodstuffs (mainly imported), comprising soft drinks, jams, sauces, canned fruits/vegetables, dried vegetables/fruits and others. The range of preservatives found were from not detected (nd)--1260, nd--1390, nd--44.8 and nd--221 mg kg(-1) for BA, SA, MP and PP, respectively.
  3. Zhang Q, Akhtar R, Saif ANM, Akhter H, Hossan D, Alam SMA, et al.
    Heliyon, 2023 May;9(5):e16118.
    PMID: 37251829 DOI: 10.1016/j.heliyon.2023.e16118
    The current study aims to examine the symmetric and asymmetric effects of climate change (CC) on rice productivity (RP) in Malaysia. The Autoregressive-Distributed Lag (ARDL) and Non-linear Autoregressive Distributed Lag (NARDL) models were employed in this study. Time series data from 1980 to 2019 were collected from the World Bank and the Department of Statistics, Malaysia. The estimated results are also validated using Fully Modified Ordinary Least Squares (FMOLS), Dynamic Ordinary Least Squares (DOLS), and Canonical Cointegration Regression (CCR). The findings of symmetric ARDL show that rainfall and cultivated area have significant and advantageous effects on rice output. The NARDL-bound test outcomes display that climate change has an asymmetrical long-run impact on rice productivity. Climate change has had varying degrees of positive and negative impacts on rice productivity in Malaysia. Positive changes in temperature and rainfall have a substantial and destructive impact on RP. At the same time, negative variations in temperature and rainfall have a substantial and positive impact on rice production in the Malaysian agriculture sector. Changes in cultivated areas, both positive and negative, have a long-term optimistic impact on rice output. Additionally, we discovered that only temperature affects rice output in both directions. Malaysian policymakers must understand the symmetric and asymmetric effects of CC on RP and agricultural policies that will promote sustainable agricultural development and food security.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links