Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Kumar S, Behl T, Sehgal A, Chigurupati S, Singh S, Mani V, et al.
    PMID: 35147886 DOI: 10.1007/s11356-022-19082-5
    The major breakthroughs in our knowledge of how biology plays a role in Parkinson's disease (PD) have opened up fresh avenues designed to know the pathogenesis of disease and identify possible therapeutic targets. Mitochondrial abnormal functioning is a key cellular feature in the pathogenesis of PD. An enzyme, leucine-rich repeat kinase 2 (LRRK2), involved in both the idiopathic and familial PD risk, is a therapeutic target. LRRK2 has a link to the endolysosomal activity. Enhanced activity of the LRRK2 kinase, endolysosomal abnormalities and aggregation of autophagic vesicles with imperfectly depleted substrates, such as α-synuclein, are all seen in the substantia nigra dopaminergic neurons in PD. Despite the fact that LRRK2 is involved in endolysosomal and autophagic activity, it is undefined if inhibiting LRRK2 kinase activity will prevent endolysosomal dysfunction or minimise the degeneration of dopaminergic neurons. The inhibitor's capability of LRRK2 kinase to inhibit endolysosomal and neuropathological alterations in human PD indicates that LRRK2 inhibitors could have significant therapeutic usefulness in PD. G2019S is perhaps the maximum common mutation in PD subjects. Even though LRRK2's well-defined structure has still not been established, numerous LRRK2 inhibitors have been discovered. This review summarises the role of LRRK2 kinase in Parkinson's disease.
  2. Bhatia S, Wong CT, Abdullah AZ
    J Hazard Mater, 2009 May 30;164(2-3):1110-7.
    PMID: 18976860 DOI: 10.1016/j.jhazmat.2008.09.040
    The low concentration and high flow rate of air-borne butyl acetate (BA) could be effectively removed using combined adsorption-catalytic oxidation system. Ag-Y (Si/Al=80) dual-function adsorbent was investigated for the adsorption step of 1000 ppm of butyl acetate at gas hourly space velocity of 13,000 h(-1) at ambient temperature under dry and humid feeds. A central composite design (CCD) coupled with response surface methodology (RSM) was employed to obtain the optimum process conditions and the interactions between process variables were demonstrated and elucidated. Humidity and increasing organic concentration shortened the adsorption service time. The effect of moisture was more pronounced at low BA concentration. The interactions between the BA concentration and humidity were statistically significant at 95% confidence level. The optimum conditions were found to be at 4500 ppm of BA with 37 min saturation time to give 58 mg BA/g as adsorption capacity. The simulated data fitted the experimental data satisfactorily. The simulated data also correctly demonstrated the overall behaviors of the adsorption process.
  3. Ong AL, Kamaruddin AH, Bhatia S, Aboul-Enein HY
    J Sep Sci, 2008 Jul;31(13):2476-85.
    PMID: 18646277 DOI: 10.1002/jssc.200800086
    An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.
  4. Bhatia S, Othman Z, Ahmad AL
    J Hazard Mater, 2007 Jun 25;145(1-2):120-6.
    PMID: 17141409
    Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).
  5. Kaur R, Sood A, Kanotra M, Arora S, Subramaniyan V, Bhatia S, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54531-54550.
    PMID: 34435290 DOI: 10.1007/s11356-021-16060-1
    Nutrition plays a significant role in the prevention and treatment of common diseases. Some superb dietary choices such as functional foods and nutriments can surely help fight against certain diseases and provide various advantages to an individual's health. Plants have been regarded as a primary source of highly effective conventional drugs leading to the development of potential novel agents, which may boost the treatment. Growing demand for functional foods acts as an aid for the producers to expand in agriculture and pave the way for innovation and research by the nutraceutical industry. The given review highlights how various functional foods such as tomatoes, chocolates, garlic and flaxseed are currently being defined, their sources, benefit in treating various ailments and the challenges with their use.
  6. Fock KM, Talley N, Goh KL, Sugano K, Katelaris P, Holtmann G, et al.
    Gut, 2016 Sep;65(9):1402-15.
    PMID: 27261337 DOI: 10.1136/gutjnl-2016-311715
    OBJECTIVE: Since the publication of the Asia-Pacific consensus on gastro-oesophageal reflux disease in 2008, there has been further scientific advancement in this field. This updated consensus focuses on proton pump inhibitor-refractory reflux disease and Barrett's oesophagus.

    METHODS: A steering committee identified three areas to address: (1) burden of disease and diagnosis of reflux disease; (2) proton pump inhibitor-refractory reflux disease; (3) Barrett's oesophagus. Three working groups formulated draft statements with supporting evidence. Discussions were done via email before a final face-to-face discussion. We used a Delphi consensus process, with a 70% agreement threshold, using Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria to categorise the quality of evidence and strength of recommendations.

    RESULTS: A total of 32 statements were proposed and 31 were accepted by consensus. A rise in the prevalence rates of gastro-oesophageal reflux disease in Asia was noted, with the majority being non-erosive reflux disease. Overweight and obesity contributed to the rise. Proton pump inhibitor-refractory reflux disease was recognised to be common. A distinction was made between refractory symptoms and refractory reflux disease, with clarification of the roles of endoscopy and functional testing summarised in two algorithms. The definition of Barrett's oesophagus was revised such that a minimum length of 1 cm was required and the presence of intestinal metaplasia no longer necessary. We recommended the use of standardised endoscopic reporting and advocated endoscopic therapy for confirmed dysplasia and early cancer.

    CONCLUSIONS: These guidelines standardise the management of patients with refractory gastro-oesophageal reflux disease and Barrett's oesophagus in the Asia-Pacific region.

  7. Kohli S, Bhatia S
    Biomed J, 2015 May-Jun;38(3):244-9.
    PMID: 25355393 DOI: 10.4103/2319-4170.143519
    Proper function, esthetics, and cost are the prime factors to be considered while selecting bridge veneering materials. The purpose of the study is to evaluate color durability of acrylic veneer materials after immersion in common beverages at different time intervals.
  8. Taufiqurrahmi N, Mohamed AR, Bhatia S
    Bioresour Technol, 2011 Nov;102(22):10686-94.
    PMID: 21924606 DOI: 10.1016/j.biortech.2011.08.068
    The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.
  9. Fan MS, Abdullah AZ, Bhatia S
    ChemSusChem, 2011 Nov 18;4(11):1643-53.
    PMID: 22191096
    A series of bimetallic catalysts containing nickel supported over MgO-ZrO2 were tested for activity in the dry reforming of carbon dioxide. A nickel-cobalt bimetallic catalyst gave the best performance in terms of conversion and coke resistance from a range of Ni-X bimetallic catalysts, X=Ca, K, Ba, La, and Ce. The nitrogen-adsorption and hydrogen-chemisorption studies showed the Ni-Co bimetallic supported catalyst to have good surface area with high metal dispersion. This contributed to the high catalytic activity, in terms of conversion activity and stability of the catalyst, at an equimolar methane/carbon dioxide feed ratio. The kinetics of methane dry reforming are studied in a fixed-bed reactor over an Ni-Co bimetallic catalyst in the temperature range 700-800 °C by varying the partial pressures of CH4 and CO2. The experimental data were analyzed based on the proposed reaction mechanism using the Langmuir-Hinshelwood kinetic model. The activation energies for methane and carbon dioxide consumption were estimated at 52.9 and 48.1 kJ mol(-1), respectively. The lower value of CO2 activation energy compared to the activation energy of CH4 indicated a higher reaction rate of CO2, which owes to the strong basicity of nanocrystalline support, MgO-ZrO2.
  10. Hashim SM, Mohamed AR, Bhatia S
    Adv Colloid Interface Sci, 2010 Oct 15;160(1-2):88-100.
    PMID: 20813344 DOI: 10.1016/j.cis.2010.07.007
    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented.
  11. Sim JH, Kamaruddin AH, Bhatia S
    Bioresour Technol, 2010 Dec;101(23):8948-54.
    PMID: 20675129 DOI: 10.1016/j.biortech.2010.07.039
    The objective of this research is to investigate the potential of transesterification of crude palm oil (CPO) to biodiesel at 30 degrees C. The mass transfer limitations problem crucial at 30 degrees C due to the viscosity of CPO has been addressed. The process parameters that are closely related to mass transfer effects like enzyme loading, agitation speed and reaction time were optimized. An optimum methanol to oil substrate molar ratio at 6.5:1 was observed and maintained throughout the experiments. The optimum operating condition for the transesterification process was found at 6.67 wt% of enzyme loading and at 150 rpm of agitation speed. The corresponding initial reaction and FAME yield obtained at 6 h were 89.29% FAME yield/hr and 85.01%, respectively. The 85% FAME yield obtained at 30 degrees C operation of CPO transesterification shows that the process is potentially feasible for the biodiesel synthesis.
  12. Goh CS, Lee KT, Bhatia S
    Bioresour Technol, 2010 Oct;101(19):7362-7.
    PMID: 20471249 DOI: 10.1016/j.biortech.2010.04.048
    This work presents the pretreatment of oil palm fronds (OPF) using hot compressed water (HCW) to enhance sugar recovery in enzymatic hydrolysis. A central, composite rotatable design was used to optimize the effect of reaction temperature, reaction time and liquid-solid ratio on the pretreatment process. All variables were found to significantly affect the glucose yield. A quadratic polynomial equation was used to model glucose yield by multiple regression analysis, using response surface methodology (RSM). Using a 10 bar pressurized reactor, the optimum conditions for pretreatment of OPF were found at 178 degrees C, 11.1 min and a liquid-solid ratio of 9.6. The predicted glucose yield was 92.78 wt.% at the optimum conditions. Experimental verification of the optimum conditions gave a glucose yield in good agreement with the estimated value of the model.
  13. Lim S, Hoong SS, Teong LK, Bhatia S
    Bioresour Technol, 2010 Sep;101(18):7180-3.
    PMID: 20395131 DOI: 10.1016/j.biortech.2010.03.134
    The novel biodiesel production technology using supercritical reactive extraction from Jatropha curcas L. oil seeds in this study has a promising role to fill as a more cost-effective processing technology. Compared to traditional biodiesel production method, supercritical reactive extraction can successfully carry out the extraction of oil and subsequent esterification/transesterification process to fatty acid methyl esters (FAME) simultaneously in a relatively short total operating time (45-80 min). Particle size of the seeds (0.5-2.0 mm) and reaction temperature/pressure (200-300 degrees C) are two primary factors being investigated. With 300 degrees C reaction temperature, 240 MPa operating pressure, 10.0 ml/g methanol to solid ratio and 2.5 ml/g of n-hexane to seed ratio, optimum oil extraction efficiency and FAME yield can reach up to 105.3% v/v and 103.5% w/w, respectively which exceeded theoretical yield calculated based on n-hexane Soxhlet extraction of Jatropha oil seeds.
  14. Goh CS, Tan KT, Lee KT, Bhatia S
    Bioresour Technol, 2010 Jul;101(13):4834-41.
    PMID: 19762229 DOI: 10.1016/j.biortech.2009.08.080
    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
  15. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
  16. Chew TL, Ahmad AL, Bhatia S
    Adv Colloid Interface Sci, 2010 Jan 15;153(1-2):43-57.
    PMID: 20060956 DOI: 10.1016/j.cis.2009.12.001
    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.
  17. Yahaya YA, Mat Don M, Bhatia S
    J Hazard Mater, 2009 Jan 15;161(1):189-95.
    PMID: 18513859 DOI: 10.1016/j.jhazmat.2008.03.104
    The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16kJ/mol) and entropy change (33.78J/molK) were determined from the biosorption equilibrium data. The FTIR analysis showed that OH, NH, CH, CO, COOH and CN groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.
  18. Chew TL, Bhatia S
    Bioresour Technol, 2008 Nov;99(17):7911-22.
    PMID: 18434141 DOI: 10.1016/j.biortech.2008.03.009
    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
  19. Wong CT, Abdullah AZ, Bhatia S
    J Hazard Mater, 2008 Sep 15;157(2-3):480-9.
    PMID: 18294771 DOI: 10.1016/j.jhazmat.2008.01.012
    The performance of silver-loaded zeolite (HY and HZSM-5) catalysts in the oxidation of butyl acetate as a model volatile organic compound (VOC) was studied. The objective was to find a catalyst with superior activity, selectivity towards deep oxidation product and stability. The catalyst activity was measured under excess oxygen condition in a packed bed reactor operated at gas hourly space velocity (GHSV)=15,000-32,000 h(-1), reaction temperature between 150 and 500 degrees C and butyl acetate inlet concentration of 1000-4000 ppm. Both AgY and AgZSM-5 catalysts exhibited high activity in the oxidation of butyl acetate. Despite lower silver content, AgY showed better activity, attributed to better metal dispersion, surface characteristics and acidity, and its pore system. Total conversion of butyl acetate was achieved at above 400 degrees C. The oxidation of butyl acetate followed a simple power law model. The reaction orders, n and m were evaluated under differential mode by varying the VOC partial pressure between 0.004 and 0.018 atm and partial pressure of oxygen between 0.05 and 0.20 atm. The reaction rate was independent of oxygen concentration and single order with respect to VOC concentration. The activation energies were 19.78 kJ/mol for AgY and 32.26 kJ/mol for AgZSM-5, respectively.
  20. Chew TL, Bhatia S
    Bioresour Technol, 2009 May;100(9):2540-5.
    PMID: 19138514 DOI: 10.1016/j.biortech.2008.12.021
    Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 degrees C, with residence time of 20s and catalyst-to-oil ratio (CTO) of 5 gg(-1). The effect of HZSM-5 (different Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links