Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Maiwall R, Sarin SK, Kumar S, Jain P, Kumar G, Bhadoria AS, et al.
    Liver Int, 2017 Oct;37(10):1497-1507.
    PMID: 28393476 DOI: 10.1111/liv.13443
    BACKGROUND AND AIM: There is limited data on predictors of acute kidney injury in acute on chronic liver failure. We developed a PIRO model (Predisposition, Injury, Response, Organ failure) for predicting acute kidney injury in a multicentric cohort of acute on chronic liver failure patients.

    PATIENTS AND METHODS: Data of 2360 patients from APASL-ACLF Research Consortium (AARC) was analysed. Multivariate logistic regression model (PIRO score) was developed from a derivation cohort (n=1363) which was validated in another prospective multicentric cohort of acute on chronic liver failure patients (n=997).

    RESULTS: Factors significant for P component were serum creatinine[(≥2 mg/dL)OR 4.52, 95% CI (3.67-5.30)], bilirubin [(<12 mg/dL,OR 1) vs (12-30 mg/dL,OR 1.45, 95% 1.1-2.63) vs (≥30 mg/dL,OR 2.6, 95% CI 1.3-5.2)], serum potassium [(<3 mmol/LOR-1) vs (3-4.9 mmol/L,OR 2.7, 95% CI 1.05-1.97) vs (≥5 mmol/L,OR 4.34, 95% CI 1.67-11.3)] and blood urea (OR 3.73, 95% CI 2.5-5.5); for I component nephrotoxic medications (OR-9.86, 95% CI 3.2-30.8); for R component,Systemic Inflammatory Response Syndrome,(OR-2.14, 95% CI 1.4-3.3); for O component, Circulatory failure (OR-3.5, 95% CI 2.2-5.5). The PIRO score predicted acute kidney injury with C-index of 0.95 and 0.96 in the derivation and validation cohort. The increasing PIRO score was also associated with mortality (P

  2. Peng Y, Zhou F, Cui J, Du K, Leng Q, Yang F, et al.
    Environ Sci Pollut Res Int, 2017 Jul;24(19):16206-16219.
    PMID: 28540543 DOI: 10.1007/s11356-017-9221-0
    The Three Gorges Dam's construction and industrial transfer have resulted in a new air pollution pattern with the potential to threaten the reservoir eco-environment. To assess the impact of socioeconomic factors on the pattern of air quality vairation and economical risks, concentrations of SO2, NO2, and PM10, industry genres, and meteorological conditions were selected in the Three Gorges Reservoir of Chongqing (TGRC) during 2006-2015. Results showed that air quality had improved to some extent, but atmospheric NO2 showed an increased trend during 2011-2015. Spatially, higher atmospheric NO2 extended to the surrounding area. The primary industry, especially for agriculture, had shown to be responsible for the remarkable increase of atmospheric NO2 (p 
  3. Wang J, Yi X, Cui J, Chang Y, Yao D, Zhou D, et al.
    Sci Total Environ, 2019 Jun 20;670:1060-1067.
    PMID: 31018421 DOI: 10.1016/j.scitotenv.2019.03.245
    With the population growth, urbanization and industrialization, China has become a hotspot of atmospheric deposition nitrogen (ADN), which is a threat to ecosystem and food safety. However, the impacts of increased ADN on rice growth and grain metal content are little studied. Based on previous long-term ADN studies, greenhouse experiment was conducted with four simulated ADN rates of 0, 30, 60 and 90 kg N ha-1 yr-1 (CK, N1, N2 and N3 as δ15N, respectively) to assess rice growth and metal uptake in a red soil ecosystem of southeast China during 2016-2017. Results showed that simulated ADN could promote rice growth and increase yields by 15.68-24.41% (except N2) and accumulations of cadmium (Cd) or copper (Cu) in organs. However, there was no linear relationship between ADN rate and rice growth or Cd or Cu uptake. The 15N-ADN was mainly accumulated in roots (21.31-67.86%) and grains (25.26-49.35%), while Cd and Cu were primarily accumulated in roots (78.86-93.44% and 90.00-96.24%, respectively). 15N-ADN and Cd accumulations in roots were significantly different between the two growing seasons (p 
  4. Cui J, Zhang Y, Yang F, Chang Y, Du K, Chan A, et al.
    Ecotoxicol Environ Saf, 2020 Apr 15;193:110344.
    PMID: 32092583 DOI: 10.1016/j.ecoenv.2020.110344
    To identify seasonal fluxes and sources of dissolved inorganic nitrogen (DIN) wet deposition, concentrations and δ15N signatures of nitrate (NO3-) and ammonium (NH4+) in wet precipitation were measured at four typical land-use types in the Three Gorges reservoir (TGR) area of southwest China for a one-year period. Higher DIN fluxes were recorded in spring and summer and their total fluxes (averaged 7.58 kg N ha-1) were similar to the critical loads in aquatic ecosystems. Significant differences of precipitation δ15N were observed for NH4+-N between town and wetland sites in spring and between urban and rural sites in summer. For NO3--N, significant differences of precipitation δ15N were observed between town and rural sites in spring and between urban and town sites in autumn, respectively. Quantitative results of NO3--N sources showed that both biomass burning and coal combustion had higher fluxes at the urban site especially in winter (0.18 ± 0.09 and 0.19 ± 0.08 kg N ha-1), which were about three times higher than those at the town site. A similar finding was observed for soil emission and vehicle exhausts in winter. On the whole, DIN wet deposition averaged at 12.13 kg N ha-1 yr-1 with the urban site as the hotspot (17.50 kg N ha-1 yr-1) and regional NO3--N fluxes had a seasonal pattern with minimum values in winter. The contribution to NO3--N wet deposition from biomass burning was 26.1 ± 14.1%, which is the second dominant factor lower than coal combustion (26.5 ± 12.6%) in the TGR area during spring and summer. Hence N emission reduction from biomass burning, coal combustion and vehicle exhausts should be strengthened especially in spring and summer to effectively manage DIN pollution for the sustainable development in TGR area.
  5. Zheng Y, Ooi MCG, Juneng L, Wee HB, Latif MT, Nadzir MSM, et al.
    Sci Total Environ, 2023 Nov 25;901:166430.
    PMID: 37607626 DOI: 10.1016/j.scitotenv.2023.166430
    Climate change is thought to influence the composition of atmospheric air, but little is known about the direct relationship between these variables, especially in a hot tropical climate like that of Malaysia. This work summarizes and analyzes the climate state and air quality of Peninsular Malaysia based on selected ground-based observations of the temperature, precipitation, relative humidity, wind speed, wind direction and concentrations of PM10, O3, CO, NO2, and SO2 over the last 20 years (2000-2019). The relationship between the climate state and air quality is analyzed using the Pearson correlation and canonical correlation analysis (CCA) methods is employed to predict the degree of change in the future air quality under different warming scenarios. It is found that the Peninsular Malaysia mainly experienced strong precipitation in the central and mountainous regions, while air pollutants are primarily concentrated in densely populated areas. Throughout the period of study (interannual, monthly, and diurnal time series analyses), Peninsular Malaysia became warmer and drier, with a significant increase in temperature (+4.2 %), decrease in the relative humidity (-4.5 %), and greater fluctuation in precipitation amount. The pollution conditions have worsened; there has been an increase in the PM10 (+16.4 %), O3 (+39.5 %), and NO2 (+2.1 %) concentration over the last 20 years. However, the amount of SO2 (-53.6 %) and CO (-20.6 %) decreased significantly. The analysis of the monthly variation shows a strong bimodality of the PM10 and O3 concentrations that corresponds to the monsoon transition. Intensive diurnal fluctuations and correlations are observed for all the variables in this study. According to the CCA, the air quality factors are strongly correlated with meteorological factors; in particular, the CO, O3, and PM10 concentrations interact strongly with the air temperature. These findings show that the future air quality in Peninsular Malaysia has high possibility to deteriorate under warming condition.
  6. Dench E, Bond-Smith D, Darcey E, Lee G, Aung YK, Chan A, et al.
    BMJ Open, 2019 Dec 31;9(12):e031041.
    PMID: 31892647 DOI: 10.1136/bmjopen-2019-031041
    INTRODUCTION: For women of the same age and body mass index, increased mammographic density is one of the strongest predictors of breast cancer risk. There are multiple methods of measuring mammographic density and other features in a mammogram that could potentially be used in a screening setting to identify and target women at high risk of developing breast cancer. However, it is unclear which measurement method provides the strongest predictor of breast cancer risk.

    METHODS AND ANALYSIS: The measurement challenge has been established as an international resource to offer a common set of anonymised mammogram images for measurement and analysis. To date, full field digital mammogram images and core data from 1650 cases and 1929 controls from five countries have been collated. The measurement challenge is an ongoing collaboration and we are continuing to expand the resource to include additional image sets across different populations (from contributors) and to compare additional measurement methods (by challengers). The intended use of the measurement challenge resource is for refinement and validation of new and existing mammographic measurement methods. The measurement challenge resource provides a standardised dataset of mammographic images and core data that enables investigators to directly compare methods of measuring mammographic density or other mammographic features in case/control sets of both raw and processed images, for the purposes of the comparing their predictions of breast cancer risk.

    ETHICS AND DISSEMINATION: Challengers and contributors are required to enter a Research Collaboration Agreement with the University of Melbourne prior to participation in the measurement challenge. The Challenge database of collated data and images are stored in a secure data repository at the University of Melbourne. Ethics approval for the measurement challenge is held at University of Melbourne (HREC ID 0931343.3).

  7. Chan ATC, Lee VHF, Hong RL, Ahn MJ, Chong WQ, Kim SB, et al.
    Ann Oncol, 2023 Mar;34(3):251-261.
    PMID: 36535566 DOI: 10.1016/j.annonc.2022.12.007
    BACKGROUND: Pembrolizumab previously demonstrated robust antitumor activity and manageable safety in a phase Ib study of patients with heavily pretreated, programmed death ligand 1 (PD-L1)-positive, recurrent or metastatic nasopharyngeal carcinoma (NPC). The phase III KEYNOTE-122 study was conducted to further evaluate pembrolizumab versus chemotherapy in patients with platinum-pretreated, recurrent and/or metastatic NPC. Final analysis results are presented.

    PATIENTS AND METHODS: KEYNOTE-122 was an open-label, randomized study conducted at 29 sites, globally. Participants with platinum-pretreated recurrent and/or metastatic NPC were randomly assigned (1 : 1) to pembrolizumab or chemotherapy with capecitabine, gemcitabine, or docetaxel. Randomization was stratified by liver metastasis (present versus absent). The primary endpoint was overall survival (OS), analyzed in the intention-to-treat population using the stratified log-rank test (superiority threshold, one-sided P = 0.0187). Safety was assessed in the as-treated population.

    RESULTS: Between 5 May 2016 and 28 May 2018, 233 participants were randomly assigned to treatment (pembrolizumab, n = 117; chemotherapy, n = 116); Most participants (86.7%) received study treatment in the second-line or later setting. Median time from randomization to data cut-off (30 November 2020) was 45.1 months (interquartile range, 39.0-48.8 months). Median OS was 17.2 months [95% confidence interval (CI) 11.7-22.9 months] with pembrolizumab and 15.3 months (95% CI 10.9-18.1 months) with chemotherapy [hazard ratio, 0.90 (95% CI 0.67-1.19; P = 0.2262)]. Grade 3-5 treatment-related adverse events occurred in 12 of 116 participants (10.3%) with pembrolizumab and 49 of 112 participants (43.8%) with chemotherapy. Three treatment-related deaths occurred: 1 participant (0.9%) with pembrolizumab (pneumonitis) and 2 (1.8%) with chemotherapy (pneumonia, intracranial hemorrhage).

    CONCLUSION: Pembrolizumab did not significantly improve OS compared with chemotherapy in participants with platinum-pretreated recurrent and/or metastatic NPC but did have manageable safety and a lower incidence of treatment-related adverse events.

  8. Cai Y, Lim HR, Khoo KS, Ng HS, Cai Y, Wang J, et al.
    Food Chem Toxicol, 2021 Dec;158:112607.
    PMID: 34653554 DOI: 10.1016/j.fct.2021.112607
    Microalgae metabolites include biologically active compounds with therapeutic effects such as anticancer, anti-inflammatory and immunomodulation effects. One of the most recent focuses is on utilizing microalgae lipid-based biologically active compounds in food applications. However, most microalgae biological active compounds in their natural forms have common drawbacks like low solubility, low physicochemical stability and strong susceptibility to degradation, which significantly limits their application in foods, therefore, it is important to find solutions to retain their functional properties. In the present work, a comprehensive review on multi-product biorefinery was carried out from upstream processing stage to downstream processing stage, and identify critical processes and factors that impact bioactive material acquisition and retention. Furthermore, since nanoencapsulation technology emerges as an effective solution for microalgae nutraceutical product's retention, this work also focus on the nanoparticle perspective and comprehensively reviews the current nanoencapsulation solutions of the microalgae bioactive extract products. The aim is to depict advances in the formulations of microalage bioactive nanoparticles and provide a critical analysis of the reported nanoparticle formation. Overall, through the investigation of microalgae from biomass to bioactive nanoparticles, we aim to facilitate microalgae nutraceuticals incorporation as high value-added ingredients in more functional food that can improve human health.
  9. Kumaran A, Chan A, Yong K, Shen S
    Orbit, 2019 Apr;38(2):95-102.
    PMID: 29482415 DOI: 10.1080/01676830.2018.1441316
    AIM: To describe differences in the deep lateral orbital wall (specifically, trigone) between Chinese, Malay, Indian and Caucasian subjects Methods: Single-centre retrospective Computed Tomogram (CT)-based study; 20 subjects of each ethnicity were used from existing databases, matched for gender, average age and laterality. Subjects below 16 years of age were excluded. DICOM image viewing software CARESTREAM Vue PACS (Carestream Health Inc., USA) and OsiriX version 7.5 (Pixmeo., Switzerland) were used to measure deep lateral wall length, thickness and volume, as well as orbital depth and statistical analyses performed using Statistical Package for Social Sciences version 21 (IBM, USA).

    RESULTS: In each group, there were 12 males (60%) and average age was not significantly different (p = 0.682-0.987). Using Chinese subjects as a reference, in Chinese, Malay, Indian and Caucasian subjects, mean trigone thickness was 13.68, 14.02, 11.60 (p 

  10. Chan A, Malhotra C, Do YK, Malhotra R, Ostbye T
    Eur J Pain, 2011 Nov;15(10):1094-9.
    PMID: 21646030 DOI: 10.1016/j.ejpain.2011.05.006
    The objective of this paper is to test and correct for systematic differences in reporting of pain severity among older adults by age, gender, ethnic group and socio-economic status using anchoring vignettes. Data from a national survey of community-dwelling older Singaporeans (aged 60 years and over) conducted in 2009 was used. Respondents were asked to rate the severity of their own pain as well as that of others described in the vignettes on a five-point scale ranging from none to extreme. An ordered probit model was used to estimate the coefficients of the independent variables (age, gender, ethnic group, education, housing type) on self-reported pain. Reporting heterogeneity in pain severity was then corrected using a Hierarchical Ordered Probit model. The results showed that before correcting for reporting heterogeneity, women, those older, and those of Malay ethnicity reported greater severity of pain, while there was no association of reported pain severity with housing type and education. However, after correcting for reporting heterogeneity, while women and those older were found to have an even greater severity of pain than what they had reported, Malays were found to have a lower severity of pain than what they had reported. We conclude that there are systematic differences in reporting pain severity by age, gender and ethnic group. We propose that pain management may be improved if medical professionals take into account reporting heterogeneity for pain severity among various population sub-groups in Singapore.
  11. Cui J, Zhou J, Peng Y, Chan A, Mao J
    Environ Sci Process Impacts, 2015 Dec;17(12):2082-91.
    PMID: 26515781 DOI: 10.1039/c5em00383k
    A detailed study on the solution chemistry of red soil in South China is presented. Data are collected from two simulated column-leaching experiments with an improved setup to evaluate the effects of atmospheric N deposition (ADN) composition and ADN flux on agricultural soil acidification using a (15)N tracer technique and an in situ soil solution sampler. The results show that solution pH values decline regardless of the increase of the NH4(+)/NO3(-) ratio in the ADN composition or ADN flux, while exchangeable Al(3+), Ca(2+), Mg(2+), and K(+) concentrations increase at different soil depths (20, 40, and 60 cm). Compared with the control, ADN (60 kg per ha per year N, NH4(+)/NO3(-) ratio of 2 : 1) decreases solution pH values, increases solution concentrations of NO3(-)-N, Al(3+), Ca(2+) and Mg(2+) at the middle and lower soil depths, and promotes their removal. NH4(+)-N was not detected in red soil solutions of all the three soil layers, which might be attributed to effects of nitrification, absorption and fixation in farmland red soil. Some of the NO3(-)-N concentrations at 40-60 cm soil depth exceed the safe drinking level of 10 mg L(-1), especially when the ADN flux is beyond 60 kg ha(-1) N. These features are critical for understanding the ADN agro-ecological effects, and for future assessment of ecological critical loads of ADN in red soil farmlands.
  12. Chan AYK, Hooi LS, Liu WJ
    Med J Malaysia, 2001 Mar;56(1):82-7.
    PMID: 11503302
    Retrospective analysis was done on 235 recipients, 133 males and 102 females, who were transplanted between 25th September 1979 and 25th June 1999. 85.1% were Chinese, 7.7% were Indians and 7.2% Malays. 23% (54) were living related renal transplants (LRRT) all except 5 done at Hospital Kuala Lumpur. 60% (141) were living unrelated donor renal transplants (LURT) done in India. 17% (40) were cadaveric transplants (CADT) (all done in China except 2 at Hospital Kuala Lumpur and one in London). 97% (228) were first transplants. Primary renal disease was unknown in 69.4%, 17% (40) glomerulonephritis, 5.5% diabetic nephropathy and 8.1% 19 others. All were on prednisolone, 93.2% were on azathioprine and 96.6% were on cyclosporin A. The acute rejection rate was 23.4% (55 episodes). Patient survival was 88% at five years and patients alive with functioning graft was 84% at 5 years. LRRT had significantly better survival compared to LURT. 34 grafts were lost to chronic allograft nephropathy. 46 recipients died (33 died with functioning graft).
  13. Yi X, Yin S, Huang L, Li H, Wang Y, Wang Q, et al.
    Sci Total Environ, 2021 Jun 01;771:144644.
    PMID: 33736175 DOI: 10.1016/j.scitotenv.2020.144644
    Chlorine radical plays an important role in the formation of ozone and secondary aerosols in the troposphere. It is hence important to develop comprehensive emissions inventory of chlorine precursors in order to enhance our understanding of the role of chlorine chemistry in ozone and secondary pollution issues. Based on a bottom-up methodology, this study presents a comprehensive emission inventory for major atomic chlorine precursors in the Yangtze River Delta (YRD) region of China for the year 2017. Four primary chlorine precursors are considered in this study: hydrogen chloride (HCl), fine particulate chloride (Cl-) (Cl- in PM2.5), chlorine gas (Cl2), and hypochlorous acid (HClO) with emissions estimated for twelve source categories. The total emissions of these four species in the YRD region are estimated to be 20,424 t, 15,719 t, 1556 and 9331 t, respectively. The emissions of HCl are substantial, with major emissions from biomass burning and coal combustion, together accounting for 68% of the total HCl emissions. Fine particulate Cl- is mainly emitted from industrial processing, biomass burning and waste incineration. The emissions of Cl2 and HClO are mainly associated with usage of chlorine-containing disinfectants, for example, water treatment, wastewater treatment, and swimming pools. Emissions of each chlorine precursor are spatially allocated based on the characteristics of individual source category. This study provides important basic dataset for further studies with respect to the effects of chlorine chemistry on the formation of air pollution complex in the YRD region.
  14. Huang L, Liu Z, Li H, Wang Y, Li Y, Zhu Y, et al.
    Geohealth, 2020 Jul 07.
    PMID: 32838101 DOI: 10.1029/2020GH000272
    The outbreak of COVID-19 in China has led to massive lockdowns in order to reduce the spread of the epidemic and control human-to-human transmission. Subsequent reductions in various anthropogenic activities have led to improved air quality during the lockdown. In this study, we apply a widely used exposure-response function to estimate the short-term health impacts associated with PM2.5 changes over the Yangtze River Delta (YRD) region due to COVID-19 lockdown. Concentrations of PM2.5 during lockdown period reduced by 22.9% to 54.0% compared to pre-lockdown level. Estimated PM2.5-related daily premature mortality during lockdown period is 895 (95% confidential interval: 637-1081), which is 43.3% lower than pre-lockdown period and 46.5% lower compared with averages of 2017-2019. According to our calculation, total number of avoided premature death associated PM2.5 reduction during the lockdown is estimated to be 42.4 thousand over the YRD region, with Shanghai, Wenzhou, Suzhou (Jiangsu province), Nanjing, and Nantong being the top five cities with largest health benefits. Avoided premature mortality is mostly contributed by reduced death associated with stroke (16.9 thousand, accounting for 40.0%), ischemic heart disease (14.0 thousand, 33.2%) and chronic obstructive pulmonary disease (7.6 thousand, 18.0%). Our calculations do not support or advocate any idea that pandemics produce a positive note to community health. We simply present health benefits from air pollution improvement due to large emission reductions from lowered human and industrial activities. Our results show that continuous efforts to improve air quality are essential to protect public health, especially over city-clusters with dense population.
  15. Li Q, Zhang K, Li R, Yang L, Yi Y, Liu Z, et al.
    Sci Total Environ, 2023 May 10;872:162071.
    PMID: 36775179 DOI: 10.1016/j.scitotenv.2023.162071
    Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.
  16. Huang L, Zhu Y, Liu H, Wang Y, Allen DT, Chel Gee Ooi M, et al.
    Environ Int, 2023 Jan;171:107710.
    PMID: 36566719 DOI: 10.1016/j.envint.2022.107710
    In recent years, ozone pollution in China has been shown to increase in frequency and persistence despite the concentrations of fine particulate matter (PM2.5) decreasing steadily. Open crop straw burning (OCSB) activities are extensive in China and emit large amounts of trace gases during a short period that could lead to elevated ozone concentrations. This study addresses the impacts of OCSB emissions on ground-level ozone concentration and the associated health impact in China. Total VOCs and NOx emissions from OCSB in 2018 were 798.8 Gg and 80.6 Gg, respectively, with high emissions in Northeast China (31.7%) and North China (23.7%). Based on simulations conducted for 2018, OCSB emissions are estimated to contribute up to 0.95 µg/m3 increase in annual averaged maximum daily 8-hour (MDA8) ozone and up to 1.35 µg/m3 for the ozone season average. The significant impact of OCSB emissions on ozone is mainly characterized by localized and episodic (e.g., daily) changes in ozone concentration, up to 20 µg/m3 in North China and Yangtze River Delta region and even more in Northeast China during the burning season. With the implementation of straw burning bans, VOCs and NOx emissions from OCSB dropped substantially by 46.9%, particularly over YRD (76%) and North China (60%). Consequently, reduced OCSB emissions result in an overall decrease in annual averaged MDA8 ozone, and reductions in monthly MDA8 ozone could be over 10 µg/m3 in North China. The number of avoided premature death due to reduced OCSB emissions (considering both PM2.5 and ozone) is estimated to be 6120 (95% Confidence Interval: 5320-6800), with most health benefits gained over east and central China. Our results illustrate the effectiveness of straw burning bans in reducing ozone concentrations at annual and national scales and the substantial ozone impacts from OCSB events at localized and episodic scales.
  17. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p  0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
  18. Chan A, Abdullah MM, Ishak WZBW, Ong-Cornel AB, Villalon AH, Kanesvaran R
    J Glob Oncol, 2017 Dec;3(6):801-813.
    PMID: 29244998 DOI: 10.1200/JGO.2016.005728
    A meeting of regional experts was convened in Manila, Philippines, to develop a resource-stratified chemotherapy-induced nausea and vomiting (CINV) management guideline. In patients treated with highly emetogenic chemotherapy in general clinical settings, triple therapy with a serotonin (5-hydroxytryptamine-3 [5-HT3]) antagonist (preferably palonosetron), dexamethasone, and aprepitant is recommended for acute CINV prevention. In resource-restricted settings, triple therapy is still recommended, although a 5-HT3 antagonist other than palonosetron may be used. In both general and resource-restricted settings, dual therapy with dexamethasone (days 2 to 4) and aprepitant (days 2 to 3) is recommended to prevent delayed CINV. In patients treated with moderately emetogenic chemotherapy, dual therapy with a 5-HT3 antagonist, preferably palonosetron, and dexamethasone is recommended for acute CINV prevention in general settings; any 5-HT3 antagonist can be combined with dexamethasone in resource-restricted environments. In general settings, for the prevention of delayed CINV associated with moderately emetogenic chemotherapy, corticosteroid monotherapy on days 2 and 3 is recommended. If aprepitant is used on day 1, it should be continued on days 2 and 3. Prevention of delayed CINV with corticosteroids is preferred in resource-restricted settings. The expert panel also developed CINV management guidelines for anthracycline plus cyclophosphamide combination schedules, multiday cisplatin, and chemotherapy with low or minimal emetogenic potential, and its recommendations are detailed in this review. Overall, these regional guidelines provide definitive guidance for CINV management in general and resource-restricted settings. These consensus recommendations are anticipated to contribute to collaborative efforts to improve CINV management in Southeast Asia.
  19. Chan AYK, Hooi LS
    Med J Malaysia, 2000 Mar;55(1):14-20.
    PMID: 11072485
    Retrospective analysis was done on 85 patients (76 female, 9 male) with lupus nephritis who started intravenous cyclophosphamide between 1/1/1989 and 31/12/1998. The initial renal biopsy (World Health Organisation) classification was III (4.7%), IV (89.4%) and V (5.9%). Average serum creatinine at time of biopsy was 0.12 +/- 0.12 mmol/l. Median duration of nephritis before biopsy was 2 months (range 0-133). Median duration of follow-up from time of biopsy to outcome (death or end-stage renal failure) was 3.3 years (range 0.3-11.8). Nineteen patients died. The calculated proportion alive at 5 years was 75% and at 10 years 64%. The calculated proportion alive with renal function was 74% and 54% at 5 and 10 years respectively. Fifty-two patients completed cyclophosphamide therapy at the end of the study. There were ten episodes of herpes zoster, the most common infection seen. No malignancy was reported.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links