Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Chan ES, Lee PP, Ravindra P, Krishnaiah K, Voo WP
    Appl Microbiol Biotechnol, 2010 Mar;86(1):385-91.
    PMID: 20033402 DOI: 10.1007/s00253-009-2384-y
    The aim of this work was to develop a standard quantitative method to measure the acid tolerance of probiotic cells when exposed to a simulated gastric fluid. Three model strains of different cell concentrations were exposed to a standard simulated gastric fluid of fixed volume. The fluid pH ranged from pH 1.5 to 2.5. In general, the death kinetics followed an exponential trend. The overall death constant, k (d), for all strains was found to be in a power relationship with the pH value and the initial cell concentration, and it can be expressed as k(d)=k(AII) (pH(-9.0)N(0)(-0.19)) where k (AII) is defined as the acid intolerance indicator and N (0) is the initial cell concentration (CFU/ml). This equation was validated with the experimental data with an average R (2) of 0.98. The acid intolerance of cells can be quantitatively expressed by the k (AII) values, where higher value indicates higher intolerance. In conclusion, a standard quantitative method has been developed to measure the acid tolerance of probiotic cells. This could facilitate the selection of probiotic strains and processing technologies.
  2. Ong YY, Tan WS, Rosfarizan M, Chan ES, Tey BT
    J Food Sci, 2012 Oct;77(10):M560-4.
    PMID: 22924854 DOI: 10.1111/j.1750-3841.2012.02894.x
    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans.
  3. Liew JC, Tan WS, Alitheen NB, Chan ES, Tey BT
    J Biosci Bioeng, 2010 Sep;110(3):338-44.
    PMID: 20547346 DOI: 10.1016/j.jbiosc.2010.02.017
    Serum deprivation inhibits cell growth and initiates apoptosis cell death in mammalian cell cultures. Since apoptosis is a genetically controlled cell death pathway, over-expression of anti-apoptotic proteins may provide a way to delay apoptosis. This study investigated the ability of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit apoptosis induced by serum deprivation. Study includes evaluation of the ability of XIAP to prolong culture period and its effect on cell proliferation in serum-deprived media. The full length human XIAP was introduced into CHO-K1 cell lines and the effects of XIAP over-expression on the inhibition of apoptosis induced by serum-deprived conditions were examined. In batch cultures, cells over-expressing XIAP showed decreased levels of apoptosis and a higher number of viable cell under serum-deprived conditions compared to the control cell lines. The viability of control cells dropped to 40% after 2days of serum deprivation, the XIAP expressing cells still maintained at a viability higher than 90%. Further investigation revealed that the caspase-3 activity of the CHO-K1 cell line was inhibited as a result of XIAP expression.
  4. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2015 Oct 9;1415:161-5.
    PMID: 26358561 DOI: 10.1016/j.chroma.2015.08.056
    Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques.
  5. Lee MF, Chan ES, Tan WS, Tam KC, Tey BT
    J Chromatogr A, 2016 May 6;1445:1-9.
    PMID: 27059397 DOI: 10.1016/j.chroma.2016.03.066
    Purification of virus-like particles (VLPs) in bind-and-elute mode has reached a bottleneck. Negative chromatography has emerged as the alternative solution; however, benchmark of negative chromatography media and their respective optimized conditions are absent. Hence, this study was carried out to compare the performance of different negative chromatography media for the purification of hepatitis B VLPs (HB-VLPs) from clarified Escherichia coli feedstock. The modified anion exchange media, core-shell adsorbents (InertShell and InertLayer 1000) and polymer grafted adsorbents (SQ) were compared. The results of chromatography from packed bed column of core-shell adsorbents showed that there is a trade-off between the purity and recovery of HB-VLPs in the flowthrough fraction due to the shell thickness. Atomic force microscopic analysis revealed funnel-shaped pore channels in the shell layer which may contribute to the entrapment of HB-VLPs. A longer residence time at a lower feed flow rate (0.5ml/min) improved slightly the HB-VLPs purity in all modified adsorbents, but the recovery in InertShell reduced substantially. The preheat-treatment is not recommended for the negative chromatography as the thermal-induced co-aggregation of HCPs and HB-VLPs would flow along with HB-VLPs and thus reduced the HB-VLPs purity in the flowthrough. Further reduction in the feedstock concentration enhanced the purity of HB-VLPs especially in InertLayer 1000 but reduced substantially the recovery of HB-VLPs. In general, the polymer grafted adsorbent, SQ, performed better than the core-shell adsorbents in handling a higher feedstock concentration.
  6. Lee MF, Chan ES, Tam KC, Tey BT
    J Chromatogr A, 2015 May 15;1394:71-80.
    PMID: 25836051 DOI: 10.1016/j.chroma.2015.03.034
    A thermo-responsive random copolymer, POEGMA (poly(oligoethylene glycol) methacrylate) grafted on cationized agarose adsorbent was used for size selective protein adsorption. The effects of OEGMA300 ((oligoethylene glycol) methyl ether methacrylate, Mn=300g/mol) content and temperature on the adsorption of bovine serum albumin (BSA) were evaluated. Increasing the content of OEGMA300 resulted a reduction in BSA adsorption due to the enhanced shielding effect of OEGMA300 chains. Grafting of POEGMA chains onto cationized agarose adsorbent reduced the BSA adsorption by more than 95% at 26.5°C, which is below the LCST (lower critical solution temperature) of POEGMA. The BSA adsorption capacities for adsorbents grafted with 10 and 20mol% of OEGMA300 decreased by 48% and 46% respectively at 38°C, a temperature higher than their LCSTs. The temperature-dependent adsorption of BSA on the adsorbents was attributed to changes in the polymer conformation. The thermal transition of grafted POEGMA conformation exposed the ligand when the temperature was increased. Myoglobin (Myo), which was smaller than BSA, its adsorption behavior was less dependent on the polymer conformation. The adsorption of myoglobin onto the adsorbent with and without POEGMA showed similar percentage of reduction whereas the adsorption of BSA onto the adsorbent with POEGMA decreased by 7.6 times compared to the one without POEGMA. The packed bed of POEGMA grafted adsorbent was used for flow through separation of a protein mixture consisted of virus-like particle, Hepatitis B virus-like particle (HBVLP), BSA and insulin aspart. The recovery of HBVLP in 20mol% of OEGMA300 grafted adsorbent was increased by 19% compared to ungrafted adsorbent. The flow through of BSA can be reduced by increasing the operating temperature above LCST of 20mol% of OEGMA300 while the smaller protein, insulin aspart, remained adsorbed onto the cationized surface. Hence, this thermo-responsive adsorbent has a potential for size-selective separation of protein especially for the recovery of large biomolecule.
  7. Low LE, Siva SP, Ho YK, Chan ES, Tey BT
    Adv Colloid Interface Sci, 2020 Mar;277:102117.
    PMID: 32035999 DOI: 10.1016/j.cis.2020.102117
    Recently, there have been increasing demand for the application of Pickering emulsions in various industries due to its combined advantage in terms of cost, quality and sustainability. This review aims to provide a complete overview of the available methodology for the physical characterization of emulsions that are stabilized by solid particles (known as Pickering emulsion). Current approaches and techniques for the analysis of the formation and properties of the Pickering emulsion were outlined along with the expected results of these methods on the emulsions. Besides, the application of modelling techniques has also been elaborated for the effective characterization of Pickering emulsions. Additionally, approaches to assess the stability of Pickering emulsions against physical deformation such as coalescence and gravitational separation were reviewed. Potential future developments of these characterization techniques were also briefly discussed. This review can act as a guide to researchers to better understand the standard procedures of Pickering emulsion assessment and the advanced methods available to date to study these emulsions, down to the minute details.
  8. Ng HW, Lee MFX, Chua GK, Gan BK, Tan WS, Ooi CW, et al.
    J Sep Sci, 2018 May;41(10):2119-2129.
    PMID: 29427396 DOI: 10.1002/jssc.201700823
    Hepatitis B virus-like particles expressed in Escherichia coli were purified using anion exchange adsorbents grafted with polymer poly(oligo(ethylene glycol) methacrylate) in flow-through chromatography mode. The virus-like particles were selectively excluded, while the relatively smaller sized host cell proteins were absorbed. The exclusion of virus-like particles was governed by the accessibility of binding sites (the size of adsorbents and the charge of grafted dextran chains) as well as the architecture (branch-chain length) of the grafted polymer. The branch-chain length of grafted polymer was altered by changing the type of monomers used. The larger adsorbent (90 μm) had an approximately twofold increase in the flow-through recovery, as compared to the smaller adsorbent (30 μm). Generally, polymer-grafted adsorbents improved the exclusion of the virus-like particles. Overall, the middle branch-chain length polymer grafted on larger adsorbent showed optimal performance at 92% flow-through recovery with a purification factor of 1.53. A comparative study between the adsorbent with dextran grafts and the polymer-grafted adsorbent showed that a better exclusion of virus-like particles was achieved with the absorbent grafted with inert polymer. The grafted polymer was also shown to reduce strong interaction between binding sites and virus-like particles, which preserved the particles' structure.
  9. Low LE, Tey BT, Ong BH, Chan ES, Tang SY
    Carbohydr Polym, 2017 Jan 02;155:391-399.
    PMID: 27702526 DOI: 10.1016/j.carbpol.2016.08.091
    We studied the formation of palm olein-in-water (O/W) Pickering emulsion stabilized by Fe3O4-cellulose nanocrystals (MCNC) nanocomposites obtained by ultrasound assisted in-situ co-precipitation method. The synthesized MCNC nanocomposites successfully stabilized Pickering emulsion with dual responses. The magnetic tests revealed a direct-relation between attractability of MCNC-stabilized Pickering emulsions and the emulsion droplet diameter. The Pickering emulsions were stable under pH ranging from 3 to 6. The stability substantially reduced around pH 8-10, and regained slowly when approaching pH 13. From microscopic and mastersizer analysis, monodisperse emulsion droplets were noticed at pH 3-6, and 13, while polydisperse emulsion were obtained at pH 8-12. The Pickering emulsions prepared at pH 6 are stable up to 14 days, while Pickering emulsions at pH 8 experienced coalescence. In this study, the dual stimuli-responsive Pickering emulsion stabilized by MCNC may hold potentials for biomedical and drug delivery as new generation of smart nanotherapeutic carrier.
  10. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
  11. Tan PY, Tey BT, Chan ES, Lai OM, Chang HW, Tan TB, et al.
    Foods, 2021 Feb 07;10(2).
    PMID: 33562391 DOI: 10.3390/foods10020358
    Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59-99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1-9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.
  12. Tan PY, Tan TB, Chang HW, Mwangi WW, Tey BT, Chan ES, et al.
    J Sci Food Agric, 2021 Nov;101(14):5963-5971.
    PMID: 33840091 DOI: 10.1002/jsfa.11249
    BACKGROUND: Throughout the past decade, Pickering emulsion has been increasingly utilized for the encapsulation of bioactive compounds due to its high stability and biocompatibility. In the present work, palm tocotrienols were initially encapsulated in a calcium carbonate Pickering emulsion, which was then subjected to alginate gelation and subsequent chitosan coating. The effects of wall material (alginate and chitosan) concentrations, gelation pH and time, and chitosan coating time on the encapsulation efficiency of palm tocotrienols were explored.

    RESULTS: Our findings revealed that uncoated alginate microcapsules ruptured upon drying and exhibited low encapsulation efficiency (13.81 ± 2.76%). However, the addition of chitosan successfully provided a more complex and rigid external wall structure to enhance the stability of the microcapsules. By prolonging the crosslinking time from 5 to 30 min and increasing the chitosan concentration from 0.1% to 0.5%, the oil encapsulation efficiency was increased by 28%. Under the right gelation pH (pH 4), the extension of gelation time from 1 to 12 h resulted in an increase in alginate-Ca2+ crosslinkings, thus strengthening the microcapsules.

    CONCLUSION: With the optimum formulation and process parameters, a high encapsulation efficiency (81.49 ± 1.75%) with an elevated oil loading efficiency (63.58 ± 2.96%) were achieved. The final product is biocompatible and can potentially be used for the delivery of palm tocotrienols. © 2021 Society of Chemical Industry.

  13. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    Food Chem, 2018 Feb 15;241:79-85.
    PMID: 28958562 DOI: 10.1016/j.foodchem.2017.08.075
    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity.
  14. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    J Agric Food Chem, 2017 Dec 06;65(48):10651-10657.
    PMID: 29124932 DOI: 10.1021/acs.jafc.7b03521
    Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.
  15. Maneeton N, Suttajit S, Maneeton B, Likhitsathian S, Eurviyanukul K, Udomratn P, et al.
    Nord J Psychiatry, 2017 Oct;71(7):503-508.
    PMID: 28632428 DOI: 10.1080/08039488.2017.1335344
    BACKGROUND: Anxious distress in major depressive disorder (MDD) is common and associated with poor outcomes and management difficulties.

    AIMS: This post hoc analysis aimed to examine the socio-demographic and clinical correlates of anxiety distress in Asian outpatients with MDD.

    METHODS: Instead of two out of five specifiers defined by the Diagnostic and Statistical Manual Version-5, anxious distress defined in this study was operationalized as the presence of at least two out of four proxy items drawn from the 90-item Symptom Checklist, Revised (SCL-90-R). Other measures included the Montgomery-Asberg Depression Rating Scale (MADRS), the Fatigue Severity Scale, the Sheehan Disability Scale and the Multidimensional Scale of Perceived Social Support.

    RESULTS: The data of 496 patients with MDD were included. Anxious distress was found in 371 participants (74.8%). The binary logistic regression analysis found that anxious distress was independently and significantly correlated with working status, higher MADRS scores, severe insomnia and functional impairment.

    CONCLUSIONS: Three-fourths of Asian patients with MDD in tertiary care settings may have DSM-5 anxious distress of at least moderate distress. Its prevalence may vary among working groups. The specifier was associated with greater depressive symptom severity, severe insomnia and functional impairment.

    Study site: n tertiary care
    settings in China, Korea, Malaysia, Singapore, Taiwan and
    Thailand
  16. Adiiba SH, Chan ES, Lee YY, Amelia, Chang MY, Song CP
    J Sci Food Agric, 2022 Dec;102(15):6921-6929.
    PMID: 35662022 DOI: 10.1002/jsfa.12053
    BACKGROUND: Crude palm oil (CPO) is rich with phytonutrients such as carotenoids and tocols which possesses many health benefits. The aim of this research was to develop a methanol-free process to produce palm phytonutrients via enzymatic hydrolysis. In this work, triacylglycerol was hydrolyzed into free fatty acids (FFAs) using three different types of liquid lipases derived from Aspergillus oryzae (ET 2.0), Aspergillus niger (Habio) and Candida antartica (CALB).

    RESULTS: ET 2.0 was found to be the best enzyme for hydrolysis. Under the optimum condition, the FFA content achievable was 790 g kg-1 after 24 h of reaction with 1:1 water-to-oil mass ratio at 50 °C and stirring speed of 9 × g. Furthermore, with the addition of 2 g kg-1 ascorbic acid, it was found that 98% of carotenoids and 96% of tocols could be retained after hydrolysis.

    CONCLUSION: This work shows that enzymatic hydrolysis, which is inherently safer, cleaner and sustainable is feasible to replace the conventional methanolysis for the production of palm phytonutrients. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  17. Oh KS, Poh PE, Chong MN, Chan ES, Lau EV, Saint CP
    Carbohydr Polym, 2016 Sep 05;148:161-70.
    PMID: 27185127 DOI: 10.1016/j.carbpol.2016.04.039
    Polyelectrolyte-complex bilayer membrane (PCBM) was fabricated using biodegradable chitosan and alginate polymers for subsequent application in the treatment of bathroom greywater. In this study, the properties of PCBMs were studied and it was found that the formation of polyelectrolyte network reduced the molecular weight cut-off (MWCO) from 242kDa in chitosan membrane to 2.71kDa in PCBM. The decrease in MWCO of PCBM results in better greywater treatment efficiency, subsequently demonstrated in a greywater filtration study where treated greywater effluent met the household reclaimed water standard of <2 NTU turbidity and <30ppm total suspended solids (TSS). In addition, a further 20% improvement in chemical oxygen demand (COD) removal was achieved as compared to a single layer chitosan membrane. Results from this study show that the biodegradable PCBM is a potential membrane material in producing clean treated greywater for non-potable applications.
  18. Ravindra P, Chan ES, Reddy KU
    Int J Food Sci Nutr, 2007 Nov;58(7):542-7.
    PMID: 17852467
    Extensive studies have been carried out on the effect of temperature and salt concentration on the theological behavior of whey proteins and different starches individually, but not on mixed dispersions of whey protein isolates and starches. In the present studies, the rheological behavior of cross-linked waxy maize starch and whey protein isolate mixed dispersions during heating at 60-85 degrees C was investigated. Further, the effect of CaCl2 (25-100 mM ionic strengths) on the gelatinization of these dispersions was determined. It was found that at a 2:3 ratio and a 3:2 ratio of cross-linked waxy maize starch to whey protein isolate mixed gels form a compatible networkmM concentration the solution viscosity was higher.
  19. Abdulla R, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2011 Mar;31(1):53-64.
    PMID: 20572796 DOI: 10.3109/07388551.2010.487185
    The fuel crisis and environmental concerns, mainly due to global warming, have led researchers to consider the importance of biofuels such as biodiesel. Vegetable oils, which are too viscous to be used directly in engines, are converted into their corresponding methyl or ethyl esters by a process called transesterification. With the recent debates on "food versus fuel," non-edible oils, such as Jatropha curcas, are emerging as one of the main contenders for biodiesel production. Much research is still needed to explore and realize the full potential of a green fuel from J. curcas. Upcoming projects and plantations of Jatropha in countries such as India, Malaysia, and Indonesia suggest a promising future for this plant as a potential biodiesel feedstock. Many of the drawbacks associated with chemical catalysts can be overcome by using lipases for enzymatic transesterification. The high cost of lipases can be overcome, to a certain extent, by immobilization techniques. This article reviews the importance of the J. curcas plant and describes existing research conducted on Jatropha biodiesel production. The article highlights areas where further research is required and relevance of designing an immobilized lipase for biodiesel production is discussed.
  20. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P
    Crit Rev Biotechnol, 2008;28(4):253-64.
    PMID: 19051104 DOI: 10.1080/07388550802428392
    Increase in volume of biodiesel production in the world scenario proves that biodiesel is accepted as an alternative to conventional fuel. Production of biodiesel using alkaline catalyst has been commercially implemented due to its high conversion and low production time. For the product and process development of biodiesel, enzymatic transesterification has been suggested to produce a high purity product with an economic, environment friendly process at mild reaction conditions. The enzyme cost being the main hurdle can be overcome by immobilization. Immobilized enzyme, which has been successfully used in various fields over the soluble counterpart, could be employed in biodiesel production with the aim of reducing the production cost by reusing the enzyme. This review attempts to provide an updated compilation of the studies reported on biodiesel production by using lipase immobilized through various techniques and the parameters, which affect their functionality.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links