Displaying publications 1 - 20 of 369 in total

Abstract:
Sort:
  1. Adrian TG, Tan PW, Chen JW, Yin WF, Chan KG
    J Genomics, 2016;4:16-8.
    PMID: 27326264 DOI: 10.7150/jgen.15063
    Kocuria rhizophila is a ubiquitous bacterium which is well known for its industrial value. Here, we present the draft genome of Kocuria rhizophila strain TPW45 which was isolated from Sungai Gabai, Selangor, Malaysia. The assembled genome comprised of 46 contigs and the estimated genome size is 2.7 Mb. Based on the RAST annotation, a gene cluster responsible for aromatic compound degradation was identified in this strain.
  2. Ahmad N, Chong TM, Hashim R, Shukor S, Yin WF, Chan KG
    J Genomics, 2015;3:97-8.
    PMID: 26816553 DOI: 10.7150/jgen.13910
    We performed whole genome sequencing on a clinical multidrug-resistant Klebsiella pneumoniae strain 223/14. Investigation into its draft genome revealed the presence of KPC-6 variant, suggesting carbapenemase is present in this isolate. We found a plasmid-borne KPC gene (882 bp) inserted between two transposase genes in the genome of K. pneumoniae 223/14.
  3. Alim FZD, Romanova EV, Tay YL, Rahman AYBA, Chan KG, Hong KW, et al.
    PLoS One, 2019;14(6):e0216679.
    PMID: 31211771 DOI: 10.1371/journal.pone.0216679
    The "ship" of the Arabian and North African deserts, the one-humped dromedary camel (Camelus dromedarius) has a remarkable capacity to survive in conditions of extreme heat without needing to drink water. One of the ways that this is achieved is through the actions of the antidiuretic hormone arginine vasopressin (AVP), which is made in a specialised part of the brain called the hypothalamo-neurohypophyseal system (HNS), but exerts its effects at the level of the kidney to provoke water conservation. Interestingly, our electron microscopy studies have shown that the ultrastructure of the dromedary HNS changes according to season, suggesting that in the arid conditions of summer the HNS is in an activated state, in preparation for the likely prospect of water deprivation. Based on our dromedary genome sequence, we have carried out an RNAseq analysis of the dromedary HNS in summer and winter. Amongst the 171 transcripts found to be significantly differentially regulated (>2 fold change, p value <0.05) there is a significant over-representation of neuropeptide encoding genes, including that encoding AVP, the expression of which appeared to increase in summer. Identification of neuropeptides in the HNS and analysis of neuropeptide profiles in extracts from individual camels using mass spectrometry indicates that overall AVP peptide levels decreased in the HNS during summer compared to winter, perhaps due to increased release during periods of dehydration in the dry season.
  4. Ang GY, Yu CY, Chan KG, Singh KK, Chan Yean Y
    J Microbiol Methods, 2015 Nov;118:99-105.
    PMID: 26342435 DOI: 10.1016/j.mimet.2015.08.024
    In this study, we report for the first time the development of a dry-reagent-based nucleic acid-sensing platform by combining a thermostabilised linear-after-the-exponential (LATE)-PCR assay with a one-step, hybridisation-based nucleic acid lateral flow biosensor. The nucleic acid-sensing platform was designed to overcome the need for stringent temperature control during transportation or storage of reagents and reduces the dependency on skilled personnel by decreasing the overall assay complexity and hands-on time. The platform was developed using toxigenic Vibrio cholerae as the model organism due to the bacterium's propensity to cause epidemic and pandemic cholera. The biosensor generates result which can be visualised with the naked eyes and the limit of detection was found to be 1pg of pure genomic DNA and 10CFU/ml of toxigenic V. cholerae. The dry-reagent-based nucleic acid-sensing platform was challenged with 95 toxigenic V. cholerae, 7 non-toxigenic V. cholerae and 66 other bacterial strains in spiked stool sample and complete agreement was observed when the results were compared to that of monosialoganglioside (GM1)-ELISA. Heat-stability of the thermostabilised LATE-PCR reaction mixes at different storage temperatures (4-56°C) was investigated for up to 90days. The dry-reagent-based genosensing platform with ready-to-use assay components provides an alternative method for sequence-specific detection of nucleic acid without any cold chain restriction that is associated with conventional molecular amplification techniques.
  5. Ang GY, Chan KG, Yean CY, Yu CY
    Diagnostics (Basel), 2022 Nov 18;12(11).
    PMID: 36428918 DOI: 10.3390/diagnostics12112854
    The continued circulation of SARS-CoV-2 virus in different parts of the world opens up the possibility for more virulent variants to evolve even as the coronavirus disease 2019 transitions from pandemic to endemic. Highly transmissible and virulent variants may seed new disruptive epidemic waves that can easily put the healthcare system under tremendous pressure. Despite various nucleic acid-based diagnostic tests that are now commercially available, the wide applications of these tests are largely hampered by specialized equipment requirements that may not be readily available, accessible and affordable in less developed countries or in low resource settings. Hence, the availability of lateral flow immunoassays (LFIs), which can serve as a diagnostic tool by detecting SARS-CoV-2 antigen or as a serological tool by measuring host immune response, is highly appealing. LFI is rapid, low cost, equipment-free, scalable for mass production and ideal for point-of-care settings. In this review, we first summarize the principle and assay format of these LFIs with emphasis on those that were granted emergency use authorization by the US Food and Drug Administration followed by discussion on the specimen type, marker selection and assay performance. We conclude with an overview of challenges and future perspective of LFI applications.
  6. Ang GY, Yu CY, Yong DA, Cheong YM, Yin WF, Chan KG
    Indian J Microbiol, 2016 Jun;56(2):225-7.
    PMID: 27570316 DOI: 10.1007/s12088-016-0568-6
    Gonorrhea is a sexually transmitted infection caused by Neisseria gonorrhoeae and the increasing reports of multidrug-resistant gonococcal isolates are a global public health care concern. Herein, we report the genome sequence of N. gonorrhoeae strain NG_869 isolated from Malaysia which may provide insights into the drug resistance determinants in gonococcal bacteria.
  7. Ang WS, Law JW, Letchumanan V, Hong KW, Wong SH, Ab Mutalib NS, et al.
    Foods, 2023 Jun 26;12(13).
    PMID: 37444223 DOI: 10.3390/foods12132485
    A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.
  8. Angers-Loustau A, Petrillo M, Bengtsson-Palme J, Berendonk T, Blais B, Chan KG, et al.
    F1000Res, 2018;7.
    PMID: 30026930 DOI: 10.12688/f1000research.14509.2
    Next-Generation Sequencing (NGS) technologies are expected to play a crucial role in the surveillance of infectious diseases, with their unprecedented capabilities for the characterisation of genetic information underlying the virulence and antimicrobial resistance (AMR) properties of microorganisms.  In the implementation of any novel technology for regulatory purposes, important considerations such as harmonisation, validation and quality assurance need to be addressed.  NGS technologies pose unique challenges in these regards, in part due to their reliance on bioinformatics for the processing and proper interpretation of the data produced.  Well-designed benchmark resources are thus needed to evaluate, validate and ensure continued quality control over the bioinformatics component of the process.  This concept was explored as part of a workshop on "Next-generation sequencing technologies and antimicrobial resistance" held October 4-5 2017.   Challenges involved in the development of such a benchmark resource, with a specific focus on identifying the molecular determinants of AMR, were identified. For each of the challenges, sets of unsolved questions that will need to be tackled for them to be properly addressed were compiled. These take into consideration the requirement for monitoring of AMR bacteria in humans, animals, food and the environment, which is aligned with the principles of a "One Health" approach.
  9. Azman AS, Othman I, Velu SS, Chan KG, Lee LH
    Front Microbiol, 2015;6:856.
    PMID: 26347734 DOI: 10.3389/fmicb.2015.00856
    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.
  10. Azman AS, Zainal N, Mutalib NA, Yin WF, Chan KG, Lee LH
    Int J Syst Evol Microbiol, 2016 Feb;66(2):554-561.
    PMID: 26556816 DOI: 10.1099/ijsem.0.000753
    A novel actinobacterial strain, MUSC 78T, was isolated from a mangrove soil collected from Peninsular Malaysia. The taxonomic status of this strain was determined using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain MUSC 78T represented a novel lineage within the class Actinobacteria. Strain MUSC 78T formed a distinct clade in the family Intrasporangiaceae and was related most closely to members of the genera Terrabacter (98.3-96.8 % 16S rRNA gene sequence similarity), Intrasporangium (98.2-96.8 %), Humibacillus (97.2 %), Janibacter (97.0-95.3 %), Terracoccus (96.8 %), Kribbia (96.6 %), Phycicoccus (96.2-94.7 %), Knoellia (96.1-94.8 %), Tetrasphaera (96.0-94.9 %) and Lapillicoccus (95.9 %). Cells were irregular rod-shaped or cocci and stained Gram-positive. The cell-wall peptidoglycan type was A3γ, with ll-diaminopimelic acid as the diagnostic diamino acid. The main cell-wall sugar was mannose and lower amounts of galactose and rhamnose were present. The predominant menaquinone was MK-8(H4). The polar lipid profile consisted of phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, diphosphatidylglycerol and phosphoglycolipid. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. The DNA G+C content was 73.1 mol%. Based on this polyphasic study, MUSC 78T exhibited phylogenetic and phenotypic differences from members of the genera of the family Intrasporangiaceae, and therefore a novel species of a new genus, Monashia flava gen. nov., sp. nov., is proposed. The type strain of Monashia flava is MUSC 78T ( = DSM 29621T = MCCC 1K00454T = NBRC 110749T).
  11. Azman AS, Othman I, Fang CM, Chan KG, Goh BH, Lee LH
    Indian J Microbiol, 2017 Jun;57(2):177-187.
    PMID: 28611495 DOI: 10.1007/s12088-016-0627-z
    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115T and M. flava MUSC 78T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.
  12. Beatson SA, Ben Zakour NL, Totsika M, Forde BM, Watts RE, Mabbett AN, et al.
    Infect Immun, 2015 May;83(5):1749-64.
    PMID: 25667270 DOI: 10.1128/IAI.02810-14
    Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
  13. Belduz AO, Canakci S, Chan KG, Kahar UM, Chan CS, Yaakop AS, et al.
    Stand Genomic Sci, 2015;10:70.
    PMID: 26413199 DOI: 10.1186/s40793-015-0065-2
    Species of Anoxybacillus are thermophiles and, therefore, their enzymes are suitable for many biotechnological applications. Anoxybacillus ayderensis AB04(T) (= NCIMB 13972(T) = NCCB 100050(T)) was isolated from the Ayder hot spring in Rize, Turkey, and is one of the earliest described Anoxybacillus type strains. The present work reports the cellular features of A. ayderensis AB04(T), together with a high-quality draft genome sequence and its annotation. The genome is 2,832,347 bp long (74 contigs) and contains 2,895 protein-coding sequences and 103 RNA genes including 14 rRNAs, 88 tRNAs, and 1 tmRNA. Based on the genome annotation of strain AB04(T), we identified genes encoding various glycoside hydrolases that are important for carbohydrate-related industries, which we compared with those of other, sequenced Anoxybacillus spp. Insights into under-explored industrially applicable enzymes and the possible applications of strain AB04(T) were also described.
  14. Bertini EV, Torres MA, Léger T, Garcia C, Hong KW, Chong TM, et al.
    Genomics, 2021 11;113(6):4352-4360.
    PMID: 34793950 DOI: 10.1016/j.ygeno.2021.11.017
    Agrobacterium tumefaciens is considered a prominent phytopathogen, though most isolates are nonpathogenic. Agrobacteria can inhabit plant tissues interacting with other microorganisms. Yeasts are likewise part of these communities. We analyzed the quorum sensing (QS) systems of A. tumefaciens strain 6N2, and its relevance for the interaction with the yeast Meyerozyma guilliermondii, both sugarcane endophytes. We show that strain 6N2 is nonpathogenic, produces OHC8-HSL, OHC10-HSL, OC12-HSL and OHC12-HSL as QS signals, and possesses a complex QS architecture, with one truncated, two complete systems, and three additional QS-signal receptors. A proteomic approach showed differences in QS-regulated proteins between pure (64 proteins) and dual (33 proteins) cultures. Seven proteins were consistently regulated by quorum sensing in pure and dual cultures. M. guilliermondii proteins influenced by QS activity were also evaluated. Several up- and down- regulated proteins differed depending on the bacterial QS. These results show the QS regulation in the bacteria-yeast interactions.
  15. Bittleston LS, Wolock CJ, Yahya BE, Chan XY, Chan KG, Pierce NE, et al.
    Elife, 2018 08 28;7.
    PMID: 30152327 DOI: 10.7554/eLife.36741
    The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.
  16. Blin P, Robic K, Khayi S, Cigna J, Munier E, Dewaegeneire P, et al.
    Mol Ecol, 2021 01;30(2):608-624.
    PMID: 33226678 DOI: 10.1111/mec.15751
    Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.
  17. Boo L, Ho WY, Mohd Ali N, Yeap SK, Ky H, Chan KG, et al.
    PeerJ, 2017;5:e3551.
    PMID: 28717596 DOI: 10.7717/peerj.3551
    Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.
  18. Boo L, Ho WY, Ali NM, Yeap SK, Ky H, Chan KG, et al.
    Int J Biol Sci, 2016;12(4):427-45.
    PMID: 27019627 DOI: 10.7150/ijbs.12777
    Breast cancer is the second leading cause of cancer-related mortality worldwide as most patients often suffer cancer relapse. The reason is often attributed to the presence of cancer stem cells (CSCs). Recent studies revealed that dysregulation of microRNA (miRNA) are closely linked to breast cancer recurrence and metastasis. However, no specific study has comprehensively characterised the CSC characteristic and miRNA transcriptome in spheroid-enriched breast cells. This study described the generation of spheroid MCF-7 cell in serum-free condition and the comprehensive characterisation for their CSC properties. Subsequently, miRNA expression differences between the spheroid-enriched CSC cells and their parental cells were evaluated using next generation sequencing (NGS). Our results showed that the MCF-7 spheroid cells were enriched with CSCs properties, indicated by the ability to self-renew, increased expression of CSCs markers, and increased resistance to chemotherapeutic drugs. Additionally, spheroid-enriched CSCs possessed greater cell proliferation, migration, invasion, and wound healing ability. A total of 134 significantly (p<0.05) differentially expressed miRNAs were identified between spheroids and parental cells using miRNA-NGS. MiRNA-NGS analysis revealed 25 up-regulated and 109 down-regulated miRNAs which includes some miRNAs previously reported in the regulation of breast CSCs. A number of miRNAs (miR-4492, miR-4532, miR-381, miR-4508, miR-4448, miR-1296, and miR-365a) which have not been previously reported in breast cancer were found to show potential association with breast cancer chemoresistance and self-renewal capability. The gene ontology (GO) analysis showed that the predicted genes were enriched in the regulation of metabolic processes, gene expression, DNA binding, and hormone receptor binding. The corresponding pathway analyses inferred from the GO results were closely related to the function of signalling pathway, self-renewability, chemoresistance, tumorigenesis, cytoskeletal proteins, and metastasis in breast cancer. Based on these results, we proposed that certain miRNAs identified in this study could be used as new potential biomarkers for breast cancer stem cell diagnosis and targeted therapy.
  19. Bukhsh A, Khan TM, Nawaz MS, Ahmed HS, Chan KG, Lee LH, et al.
    Patient Prefer Adherence, 2018;12:2377-2385.
    PMID: 30519003 DOI: 10.2147/PPA.S177314
    Objective: Association of various self-care activities on glycemic control of people with diabetes (PWD) in Pakistan is yet to be explored. The current study aimed to evaluate the association of various diabetes-related self-care activities with glycated hemoglobin (HbA1c) levels and to examine the predictive relationship of patients' demographic variables with their self-care activities.

    Patients and methods: A cross-sectional study was conducted on adult PWD (N=218) who were diagnosed with type 2 diabetes mellitus of at least 1 year duration. Self-care activities were examined by using the Urdu version of Diabetes Self-management Questionnaire. Linear regression analysis was conducted to examine the significant predictors for diabetes-related self-care activities and glycemic control.

    Results: Mean age of the patients was 50.77±13.3 years. Poor glycemic control (HbA1c $7%) was observed in majority of the patients (83%). Linear regression analysis revealed that glucose management (β=-0.44; 95% CI -0.438, -0.209; P<0.001) was the strongest predictor for low levels of patients' HbA1c, followed by dietary control (β=-0.19; 95% CI -0.248, -0.018; P=0.024) and physical activity (β=-0.17; 95% CI -0.165, -0.023; P=0.010), respectively. Linear regression analysis showed that use of oral hypoglycemic agents only (β=-0.218; 95% CI -0.956, -0.200; P=0.003) and higher education level (β=0.204; 95% CI 0.138, 0.777; P=0.005) were significant predictors for higher scores of patients' self-care activities.

    Conclusion: The findings support that PWD having better self-reported self-care activities achieve better glycemic control. Patients' self-care activities should be monitored on a regular basis, especially for those who are at risk of poor glycemic control.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links