Displaying publications 1 - 20 of 369 in total

Abstract:
Sort:
  1. Zowawi HM, Forde BM, Alfaresi M, Alzarouni A, Farahat Y, Chong TM, et al.
    Sci Rep, 2015;5:15082.
    PMID: 26478520 DOI: 10.1038/srep15082
    Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-bla(OXA-181) mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics.
  2. Zhong M, Huang J, Wu Z, Chan KG, Wang L, Li J, et al.
    Int J Mol Sci, 2022 Nov 18;23(22).
    PMID: 36430760 DOI: 10.3390/ijms232214280
    Periodontal diseases are predisposing factors to the development of many systemic disorders, which is often initiated via leukocyte infiltration and vascular inflammation. These diseases could significantly affect human health and quality of life. Hence, it is vital to explore effective therapies to prevent disease progression. Periodontitis, which is characterized by gingival bleeding, disruption of the gingival capillary's integrity, and irreversible destruction of the periodontal supporting bone, appears to be caused by overexpression of selectins in periodontal tissues. Selectins (P-, L-, and E-selectins) are vital members of adhesion molecules regulating inflammatory and immune responses. They are mainly located in platelets, leukocytes, and endothelial cells. Furthermore, selectins are involved in the immunopathogenesis of vascular inflammatory diseases, such as cardiovascular disease, diabetes, cancers, and so on, by mediating leukocyte recruitment, platelet activation, and alteration of endothelial barrier permeability. Therefore, selectins could be new immunotherapeutic targets for periodontal disorders and their associated systemic diseases since they play a crucial role in immune regulation and endothelium dysfunction. However, the research on selectins and their association with periodontal and systemic diseases remains limited. This review aims to discuss the critical roles of selectins in periodontitis and associated systemic disorders and highlights the potential of selectins as therapeutic targets.
  3. Zainal N, Ser HL, Yin WF, Tee KK, Lee LH, Chan KG
    Antonie Van Leeuwenhoek, 2016 Mar;109(3):467-74.
    PMID: 26786500 DOI: 10.1007/s10482-016-0653-1
    A novel Streptomyces strain, MUSC 119(T), was isolated from a soil collected from a mangrove forest. Cells of MUSC 119(T) stained Gram-positive and formed light brownish grey aerial mycelium and grayish yellowish brown substrate mycelium on ISP 2 medium. A polyphasic approach was used to determine the taxonomic status of strain MUSC 119(T), which shows a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The cell wall peptidoglycan consisted of LL-diaminopimelic acid. The predominant menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile consisted of phosphatidylinositol, phosphatidylethanolamine, glycolipids, diphosphatidylglycerol and four phospholipids. The predominant cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. The cell wall sugars were glucose, mannose, ribose and rhamnose. The phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain MUSC119(T) to be closely related to Streptomyces rhizophilus JR-41(T) (99.0 % sequence similarity), S. panaciradicis 1MR-8(T) (98.9 %), S. gramineus JR-43(T) (98.8 %) and S. graminisoli JR-19(T) (98.7 %). These results suggest that MUSC 119(T) should be placed within the genus Streptomyces. DNA-DNA relatedness values between MUSC 119(T) to closely related strains ranged from 14.5 ± 1.3 to 27.5 ± 0.7 %. The G+C content was determined to be 72.6 mol  %. The polyphasic study of MUSC 119(T) showed that this strain represents a novel species, for which the name Streptomyces humi sp. nov. is proposed. The type strain of S. humi is MUSC 119(T) (=DSM 42174(T) = MCCC 1K00505(T)).
  4. Yunos NY, Tan WS, Koh CL, Sam CK, Mohamad NI, Tan PW, et al.
    Sensors (Basel), 2014;14(7):11595-604.
    PMID: 24984061 DOI: 10.3390/s140711595
    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-L-homoserine lactone (C8-HSL) and N-decanoyl-L-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07.
  5. Yunos NY, Tan WS, Mohamad NI, Tan PW, Adrian TG, Yin WF, et al.
    Sensors (Basel), 2014;14(5):9145-52.
    PMID: 24859023 DOI: 10.3390/s140509145
    Proteobacteria use quorum sensing to regulate target gene expression in response to population density. Quorum sensing (QS) is achieved via so-called signalling molecules and the best-studied QS signalling system uses N-acyl homoserine lactones (AHLs). This study aimed to identify and characterize the production of AHLs by a bacterium ND03 isolated from a Malaysian tropical rainforest waterfall. Molecular identification showed that ND03 is a Pantoea sp. closely related to Pantoea rodasii. We used Chromobacterium violaceum CV026, an AHL biosensor for preliminary AHL production screening and then used high resolution triple quadrupole liquid chromatography-mass spectrometry, to confirm that P. rodasii strain ND03 produced N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL). To the best of our knowledge, this is the first report for such a discovery in P. rodasii strain ND03.
  6. Yunos NY, Tan WS, Mohamad NI, Tan PW, Adrian TG, Yin WF, et al.
    Sensors (Basel), 2014;14(5):8305-12.
    PMID: 24815680 DOI: 10.3390/s140508305
    In many species of bacteria, the quorum sensing mechanism is used as a unique communication system which allows them to regulate gene expression and behavior in accordance with their population density. N-Acylhomoserine lactones (AHLs) are known as diffusible autoinducer molecules involved in this communication network. This finding aimed to characterize the production of AHL of a bacterial strain ND04 isolated from a Malaysian waterfall. Strain ND04 was identified as Kluyvera sp. as confirmed by molecular analysis of its 16S ribosomal RNA gene sequence. Kluyvera sp. is closely related to the Enterobacteriaceae family. Chromobacterium violaceum CV026 was used as a biosensor to detect the production of AHL by strain ND04. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of strain ND04 showed our isolate produced two AHLs which are N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6 HSL) and N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8 HSL).
  7. Yu CY, Ang GY, Cheng HJ, Cheong YM, Yin WF, Chan KG
    Genom Data, 2016 Mar;7:185-6.
    PMID: 26981402 DOI: 10.1016/j.gdata.2015.12.024
    Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000.
  8. Yu CY, Ang GY, Chan KG, Banga Singh KK, Chan YY
    Biosens Bioelectron, 2015 Aug 15;70:282-8.
    PMID: 25835520 DOI: 10.1016/j.bios.2015.03.048
    In this study, we developed a nucleic acid-sensing platform in which a simple, dry-reagent-based nucleic acid amplification assay is combined with a portable multiplex electrochemical genosensor. Preparation of an amplification reaction mix targeting multiple DNA regions of interest is greatly simplified because the lyophilized reagents need only be reconstituted with ultrapure water before the DNA sample is added. The presence of single or multiple target DNAs causes the corresponding single-stranded DNA (ssDNA) amplicons to be generated and tagged with a fluorescein label. The fluorescein-labeled ssDNA amplicons are then analyzed using capture probe-modified screen-printed gold electrode bisensors. Enzymatic amplification of the hybridization event is achieved through the catalytic production of electroactive α-naphthol by anti-fluorescein-conjugated alkaline phosphatase. The applicability of this platform as a diagnostic tool is demonstrated with the detection of toxigenic Vibrio cholerae serogroups O1 and O139, which are associated with cholera epidemics and pandemics. The platform showed excellent diagnostic sensitivity and specificity (100%) when challenged with 168 spiked stool samples. The limit of detection was low (10 colony-forming units/ml) for both toxigenic V. cholerae serogroups. A heat stability assay revealed that the dry-reagent amplification reaction mix was stable at temperatures of 4-56 °C, with an estimated shelf life of seven months. The findings of this study highlight the potential of combining a dry-reagent-based nucleic acid amplification assay with an electrochemical genosensor in a more convenient, sensitive, and sequence-specific detection strategy for multiple target nucleic acids.
  9. Yu CY, Chan KG, Yean CY, Ang GY
    Diagnostics (Basel), 2021 Jan 01;11(1).
    PMID: 33401392 DOI: 10.3390/diagnostics11010053
    The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began as a cluster of pneumonia cases in Wuhan, China before spreading to over 200 countries and territories on six continents in less than six months. Despite rigorous global containment and quarantine efforts to limit the transmission of the virus, COVID-19 cases and deaths have continued to increase, leaving devastating impacts on the lives of many with far-reaching effects on the global society, economy and healthcare system. With over 43 million cases and 1.1 million deaths recorded worldwide, accurate and rapid diagnosis continues to be a cornerstone of pandemic control. In this review, we aim to present an objective overview of the latest nucleic acid-based diagnostic tests for the detection of SARS-CoV-2 that have been authorized by the Food and Drug Administration (FDA) under emergency use authorization (EUA) as of 31 October 2020. We systematically summarize and compare the principles, technologies, protocols and performance characteristics of amplification- and sequencing-based tests that have become alternatives to the CDC 2019-nCoV Real-Time RT-PCR Diagnostic Panel. We highlight the notable features of the tests including authorized settings, along with the advantages and disadvantages of the tests. We conclude with a brief discussion on the current challenges and future perspectives of COVID-19 diagnostics.
  10. Young ND, Chan KG, Korhonen PK, Min Chong T, Ee R, Mohandas N, et al.
    Sci Rep, 2015;5:17345.
    PMID: 26621075 DOI: 10.1038/srep17345
    Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
  11. Yong YL, Tan LT, Ming LC, Chan KG, Lee LH, Goh BH, et al.
    Front Pharmacol, 2016;7:538.
    PMID: 28119613 DOI: 10.3389/fphar.2016.00538
    In particular, neuropathic pain is a major form of chronic pain. This type of pain results from dysfunction or lesions in the central and peripheral nervous system. Capsaicin has been traditionally utilized as a medicine to remedy pain. However, the effectiveness and safety of this practice is still elusive. Therefore, this systematic review aimed to investigate the effect of topical capsaicin as a pain-relieving agent that is frequently used in pain management. In brief, all the double-blinded, randomized placebo- or vehicle-controlled trials that were published in English addressing postherpetic neuralgia were included. Meta-analysis was performed using Revman(®) version 5.3. Upon application of the inclusion and exclusion criteria, only six trials fulfilled all the criteria and were included in the review for qualitative analysis. The difference in mean percentage change in numeric pain rating scale score ranges from -31 to -4.3. This demonstrated high efficacy of topical capsaicin application and implies that capsaicin could result in pain reduction. Furthermore, meta-analysis was performed on five of the included studies. All the results of studies are in favor of the treatment using capsaicin. The incidence of side effects from using topical capsaicin is consistently higher in all included studies, but the significance of safety data cannot be quantified due to a lack of p-values in the original studies. Nevertheless, topical capsaicin is a promising treatment option for specific patient groups or certain neuropathic pain conditions such as postherpetic neuralgia.
  12. Yong PL, Chan KG
    ScientificWorldJournal, 2014;2014:874764.
    PMID: 25177734 DOI: 10.1155/2014/874764
    We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.
  13. Yong HS, Song SL, Lim PE, Chan KG, Chow WL, Eamsobhana P
    Sci Rep, 2015;5:15155.
    PMID: 26472633 DOI: 10.1038/srep15155
    The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.
  14. Yong HS, Song SL, Eamsobhana P, Goh SY, Lim PE, Chow WL, et al.
    PLoS One, 2015;10(7):e0134581.
    PMID: 26230642 DOI: 10.1371/journal.pone.0134581
    Angiostrongylus costaricensis is a zoonotic parasitic nematode that causes abdominal or intestinal angiostrongyliasis in humans. It is endemic to the Americas. Although the mitochondrial genome of the Brazil taxon has been published, there is no available mitochondrial genome data on the Costa Rica taxon. We report here the complete mitochondrial genome of the Costa Rica taxon and its genetic differentiation from the Brazil taxon. The whole mitochondrial genome was obtained from next-generation sequencing of genomic DNA. It had a total length of 13,652 bp, comprising 36 genes (12 protein-coding genes-PCGs, 2 rRNA and 22 tRNA genes) and a control region (A + T rich non-coding region). It is longer than that of the Brazil taxon (13,585 bp). The larger mitogenome size of the Costa Rica taxon is due to the size of the control region as the Brazil taxon has a shorter length (265 bp) than the Costa Rica taxon (318 bp). The size of 6 PCGs and the start codon for ATP6, CYTB and NAD5 genes are different between the Costa Rica and Brazil taxa. Additionally, the two taxa differ in the stop codon of 6 PCGs. Molecular phylogeny based on 12 PCGs was concordant with two rRNA, 22 tRNA and 36 mitochondrial genes. The two taxa have a genetic distance of p = 16.2% based on 12 PCGs, p = 15.3% based on 36 mitochondrial genes, p = 13.1% based on 2 rRNA genes and p = 10.7% based on 22 tRNA genes, indicating status of sibling species. The Costa Rica and Brazil taxa of A. costaricensis are proposed to be accorded specific status as members of a species complex.
  15. Yong HS, Chua KO, Song SL, Liew YJ, Eamsobhana P, Chan KG
    Mol Biol Rep, 2021 Aug;48(8):6047-6056.
    PMID: 34357549 DOI: 10.1007/s11033-021-06608-2
    BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank.

    METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific.

    CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.

  16. Yong HS, Song SL, Chua KO, Wayan Suana I, Eamsobhana P, Tan J, et al.
    Sci Rep, 2021 May 21;11(1):10680.
    PMID: 34021208 DOI: 10.1038/s41598-021-90162-1
    Spiders of the genera Nephila and Trichonephila are large orb-weaving spiders. In view of the lack of study on the mitogenome of these genera, and the conflicting systematic status, we sequenced (by next generation sequencing) and annotated the complete mitogenomes of N. pilipes, T. antipodiana and T. vitiana (previously N. vitiana) to determine their features and phylogenetic relationship. Most of the tRNAs have aberrant clover-leaf secondary structure. Based on 13 protein-coding genes (PCGs) and 15 mitochondrial genes (13 PCGs and two rRNA genes), Nephila and Trichonephila form a clade distinctly separated from the other araneid subfamilies/genera. T. antipodiana forms a lineage with T. vitiana in the subclade containing also T. clavata, while N. pilipes forms a sister clade to Trichonephila. The taxon vitiana is therefore a member of the genus Trichonephila and not Nephila as currently recognized. Studies on the mitogenomes of other Nephila and Trichonephila species and related taxa are needed to provide a potentially more robust phylogeny and systematics.
  17. Yong D, Ee R, Lim YL, Chang CY, Yin WF, Chan KG
    Genome Announc, 2015;3(3).
    PMID: 25953192 DOI: 10.1128/genomeA.00409-15
    Lysinibacillus fusiformis strain RB21 is a quorum-quenching bacterium that is able to degrade quorum-sensing signaling molecules. Here, we present the first complete genome sequence of L. fusiformis strain RB21. The finished genome is 4.8 Mbp in size, and the quorum-quenching gene was identified.
  18. Yong D, Ee R, Lim YL, Yu CY, Ang GY, How KY, et al.
    J Biotechnol, 2016 Jan 10;217:51-2.
    PMID: 26603120 DOI: 10.1016/j.jbiotec.2015.11.009
    Pandoraea thiooxydans DSM 25325(T) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of a sesame plant. Here, we present the first complete genome of P. thiooxydans DSM 25325(T). Several genes involved in thiosulfate oxidation and biodegradation of aromatic compounds were identified.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links