Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Zhang C, Ho SH, Chen WH, Wang R, Show PL, Ong HC
    J Biotechnol, 2021 Sep 10;338:81-90.
    PMID: 34298023 DOI: 10.1016/j.jbiotec.2021.07.009
    Microalgae are a promising feedstock for carbon-neutral biofuel production due to their superior cellular composition. Alternatively, oxidative torrefaction has been recognized as a potential thermochemical technique for microalgal solid biofuel upgrading. Herein, by using microalga N. oceanica as a feedstock, several characterizations are adopted for evaluating the potential of oxidative torrefaction towards microalgal solid biofuel production. The oxidatively torrefied microalgae can be upgraded as lignite. After in-depth analysis, significant change in the surface microstructure of oxidatively torrefied microalgae is largely changed (via wrinkle and fragmentation) The hydrophobicity, thermal decomposition, thermal stability, and aromatization of oxidatively torrefied microalgae can be largely enhanced as the oxidative torrefaction severity increase. With the increasing torrefaction temperature, the hydrophobicity of oxidative torrefied microalgae gradually improved. The decomposition of C-2/3/5, and -OCH3, the CO bonds of CH3CO-, and the aromatization occurs via oxidative torrefaction according to the NMR analysis. For XPS analysis, torrefaction operation significantly decreases the carbide carbon and enhances the graphitization. As a result, the thermal stability of oxidatively torrefied microalgae is improved. Conclusively, the information obtained in this study can provide insights into the evaluation of oxidative torrefaction performance and fuel properties of microalgal solid biofuel, which may help accelerate the advancement of oxidative torrefaction industrialization.
  2. Zhang C, Chen WH, Ho SH, Zhang Y, Lim S
    Bioresour Technol, 2023 Oct;386:129531.
    PMID: 37473787 DOI: 10.1016/j.biortech.2023.129531
    This study performs the comparative advantage analysis of oxidative torrefaction of corn stalks to investigate the advantages of oxidative torrefaction for biochar fuel property upgrading. The obtained results indicate that oxidative torrefaction is more efficient in realizing mass loss and energy density improvement, as well as elemental carbon accumulation and surface functional groups removal, and thus leads to a better fuel property. The maximum values of relative mass loss, higher heating value, enhancement factor, and energy yield are 3.00, 1.10, 1.03, and 0.87, respectively. The relative elemental carbon, hydrogen, and oxygen content ranges are 1.30-3.10, 1.50-3.30, and 2.00-6.80, respectively. In addition, an excellent linear distribution is obtained between the comprehensive pyrolysis index and torrefaction severity index, with elemental carbon and oxygen component variation stemming from pyrolysis performance correlating to the elemental component and valance.
  3. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, et al.
    Bioresour Technol, 2017 Dec;246:2-11.
    PMID: 28844690 DOI: 10.1016/j.biortech.2017.08.009
    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications.
  4. Yew GY, Chew KW, Malek MA, Ho YC, Chen WH, Ling TC, et al.
    Biotechnol Biofuels, 2019;12:252.
    PMID: 31666807 DOI: 10.1186/s13068-019-1591-8
    Background: The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution.

    Result: Several parameters which can affect the biphasic system were analyzed: contact time, volume of solvent, volume ratio, type of organic solvent, biomass amount and concentration of solvents, to extract the highest amount of lipids from microalgae. The results were optimized and up to 83.5% of lipid recovery yield and 94.6% of enhancement was successfully achieved. The results obtain from GC-FID were similar to the analysis of triglyceride lipid standard.

    Conclusion: The profound hybrid biphasic system shows great potential to radically disrupt the cell wall of microalgae and instantaneously extract lipids in a single-step approach. The lipids extracted were tested to for its comparability to biodiesel performance.

  5. Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, et al.
    Bioresour Technol, 2020 Oct;313:123675.
    PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675
    An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
  6. Wong WY, Lim S, Pang YL, Shuit SH, Chen WH, Lee KT
    Sci Total Environ, 2020 Jul 20;727:138534.
    PMID: 32334218 DOI: 10.1016/j.scitotenv.2020.138534
    Interest in biodiesel research has escalated over the years due to dwindling fossil fuel reserves. The implementation of a carbon-based solid acid catalyst in biodiesel production eradicates the separation problems associated with homogeneous catalysis. However, its application in the glycerol-free interesterification process for biodiesel production is still rarely being studied in the literature. In this study, novel environmentally benign catalysts were prepared from oil palm empty fruit bunch (OPEFB) derived activated carbon (AC) which is sustainable and low cost via direct sulfonation using concentrated sulfuric acid. The effects of synthesizing variables such as carbonization and sulfonation temperatures with different holding times towards the fatty acid methyl ester (FAME) yield in interesterification reaction with oleic acid and methyl acetate were investigated in detail. It was found that the optimum carbonization temperature and duration together with sulfonation temperature and duration were 600 °C, 3 h, 100 °C and 6 h, respectively. The catalyst possessed an amorphous structure with a high total acid density of 9.0 mmol NaOH g-1 due to the well-developed porous framework structure of the carbon support. Under these optimum conditions, the OPEFB derived solid acid catalyst recorded an excellent catalytic activity of 50.5% methyl oleate yield at 100 °C after 8 h with 50:1 methyl acetate to oleic acid molar ratio and 10 wt% catalyst dosage. The heterogeneous acid catalyst derived from OPEFB had shown promising properties that made them highly suitable for cost-effective and environmental-friendly glycerol-free biodiesel production.
  7. Wan Mahari WA, Peng W, Nam WL, Yang H, Lee XY, Lee YK, et al.
    J Hazard Mater, 2020 12 05;400:123156.
    PMID: 32574879 DOI: 10.1016/j.jhazmat.2020.123156
    A review of valorization of oyster mushroom species and waste generated in the mushroom cultivation is presented, with a focus on the cultivation and valorization techniques, conditions, current research status and particularly the hazard mitigation and value-added recovery of the waste mushroom substrate (WMS) - an abundant waste in mushroom cultivation industry. Based on the studies reviewed, the production rate of the present mushroom industry is inadequate to meet market demands. There is a need for the development of new mushroom cultivation methods that can guarantee an increase in mushroom productivity and quality (nutritional and medicinal properties). This review shows that the cylindrical baglog cultivation method is more advantageous compared with the wood tray cultivation method to improve the mushroom yield and cost efficiency. Approximately 5 kg of potentially hazardous WMS (spreading diseases in mushroom farm) is generated for production of 1 kg of mushroom. This encourages various valorization of WMS for use in agricultural and energy conversion applications, mainly as biocompost, plant growing media, and bioenergy. The use of WMS as biofertilizer has shown desirable performance compared to conventional chemical fertilizer, whilst the use of WMS as energy feedstock could produce cleaner bioenergy sources compared to conventional fuels.
  8. Wan Mahari WA, Nam WL, Sonne C, Peng W, Phang XY, Liew RK, et al.
    Bioresour Technol, 2020 Sep;312:123572.
    PMID: 32470829 DOI: 10.1016/j.biortech.2020.123572
    Microwave vacuum pyrolysis of palm kernel shell was examined to produce engineered biochar for application as additive in agriculture application. The pyrolysis approach, performed at 750 W of microwave power, produced higher yield of porous biochar (28 wt%) with high surface area (270 cm2/g) compared to the yield obtained by conventional approach (<23 wt%). Addition of the porous biochar in mushroom substrate showed increased moisture content (99%) compared to the substrate without biochar (96%). The mushroom substrate added with biochar (150 g) was optimal in shortening formation, growth, and full colonization of the mycelium within one month. Using 2.5% of the biochar in mushroom substrate desirably maintained the optimum pH level (6.8-7) during the mycelium colonization period, leading to high mycelium growth (up to 91%) and mushroom yield (up to 280 g). The engineered biochar shows great potential as moisture retention and neutralizing agent in mushroom cultivation.
  9. Valizadeh S, Khani Y, Farooq A, Kumar G, Show PL, Chen WH, et al.
    Bioresour Technol, 2023 Jan 18;372:128638.
    PMID: 36669624 DOI: 10.1016/j.biortech.2023.128638
    Steam gasification of microalgae upon perovskite oxide-supported nickel (Ni) catalysts was carried out for H2-rich gas production. Ni-perovskite oxide catalysts with partial substitution of B in perovskite structures (Ni/CaZrO3, Ni/Ca(Zr0.8Ti0.2)O3, and Ni/Ca(Zr0.6Ti0.4)O3) were synthesized and compared with those of the Ni/Al2O3 catalyst. The perovskite oxide supports improved Ni dispersion by reducing the particle size and strengthening the Ni-support interaction. Higher gas yields and H2 selectivity were obtained using Ni-perovskite oxide catalysts rather than Ni/Al2O3. In particular, Ni/Ca(Zr0.8Ti0.2)O3 showed the highest activity and selectivity for H2 production because of the synergetic effect of metallic Ni and elements present in the perovskite structures caused by high catalytic activity coupled with enhanced oxygen mobility. Moreover, increasing the temperature promoted the yield of gas and H2 content. Overall, considering the outstanding advantages of perovskite oxides as supports for Ni catalysts is a promising prospect for H2 production via gasification technology.
  10. Teh YY, Lee KT, Chen WH, Lin SC, Sheen HK, Tan IS
    Bioresour Technol, 2017 Dec;246:20-27.
    PMID: 28781203 DOI: 10.1016/j.biortech.2017.07.101
    This study aims to produce biochar and sugars from a macroalga Eucheuma denticulatum using dilute sulfuric acid hydrolysis along with microwave-assisted heating. The reactions were operated at sulfuric acid concentrations of 0.1 and 0.2M, reaction temperatures of 150-170°C and a heating time of 10min. Compared to the raw macroalga, biochar qualities were improved with increased carbon content and lower ash and moisture contents. The calorific value of the biochar could be intensified up to 45%, and 39% of energy yield was recovered. Apart from producing biochar, the highest total reducing sugars were 51.47g/L (74.84% yield) along with a low by-product 5-HMF of 0.20g/L, when the biomass was treated under the optimum conditions at 160°C with 0.1M H2SO4. Thus, this study demonstrated that macroalgae could be potentially used as biomass feedstock under microwave-assisted acid hydrolysis for the production of biofuel and value-added products.
  11. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
  12. Suresh R, Rajendran S, Gnanasekaran L, Show PL, Chen WH, Soto-Moscoso M
    Chemosphere, 2023 May;322:138152.
    PMID: 36791812 DOI: 10.1016/j.chemosphere.2023.138152
    Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
  13. Su G, Ong HC, Gan YY, Chen WH, Chong CT, Ok YS
    Bioresour Technol, 2022 Jan;344(Pt B):126096.
    PMID: 34626763 DOI: 10.1016/j.biortech.2021.126096
    Microalgae are the most prospective raw materials for the production of biofuels, pyrolysis is an effective method to convert biomass into bioenergy. However, biofuels derived from the pyrolysis of microalgae exhibit poor fuel properties due to high content of moisture and protein. Co-pyrolysis is a simple and efficient method to produce high-quality bio-oil from two or more materials. Tires, plastics, and bamboo waste are the optimal co-feedstocks based on the improvement of yield and quality of bio-oil. Moreover, adding catalysts, especially CaO and Cu/HZSM-5, can enhance the quality of bio-oil by increasing aromatics content and decreasing oxygenated and nitrogenous compounds. Consequently, this paper provides a critical review of the production of bio-oil from co-pyrolysis of microalgae with other biomass wastes. Meanwhile, the underlying mechanism of synergistic effects and the catalytic effect on co-pyrolysis are discussed. Finally, the economic viability and prospects of microalgae co-pyrolysis are summarized.
  14. Seo J, Kim H, Jeon S, Valizadeh S, Khani Y, Jeon BH, et al.
    Bioresour Technol, 2023 Apr;373:128702.
    PMID: 36740100 DOI: 10.1016/j.biortech.2023.128702
    Air gasification of the Wood-Plastic Composite (WPC) was performed over Ni-loaded HZSM-5 catalysts to generate H2-rich gas. Increasing SiO2/Al2O3 ratio (SAR) of HZSM-5 adversely affected catalytic activity, where the highest gas yield (51.38 wt%) and H2 selectivity (27.01 vol%) were acquired using 20 %Ni/HZSM-5(30) than those produced over 20 %Ni/HZSM-5(80) and 20 %Ni/HZSM-5(280). Reducing SAR was also favorably conducive to increasing the acyclic at the expense of cyclic compounds in oil products. These phenomena are attributed to enhanced acid strength and Ni dispersion of 20 %Ni/HZSM-5(30) catalyst. Moreover, catalytic activity in the terms of gas yield and H2 selectivity enhanced with growing Ni loading to 20 %. Also, the addition of promoters (Cu and Ca) to 20 %Ni/HZSM-5(30) boosted the catalytic efficiency for H2-rich gas generation. Raising temperature indicated a positive relevance with the gas yield and H2 selectivity. WPC valorization via gasification technology would be an outstanding outlook in the terms of a waste-to-energy platform.
  15. Selvarajoo A, Wong YL, Khoo KS, Chen WH, Show PL
    Chemosphere, 2022 Jan 26;294:133671.
    PMID: 35092753 DOI: 10.1016/j.chemosphere.2022.133671
    Renewable energy sources such as biomass have been proven to be one of the promising sustainable alternatives to fossil fuels. However, using biomass directly as a fuel is less attractive due to its high moisture content, poor grindability, low bulk density, and low energy density nature. Hence biomass can be converted into biochar to overcome these challenges. In this study, biochar was derived from citrus peels biomass by slow pyrolysis over the temperature range of 300-700 °C. The effect of pyrolysis temperature on the quality of citrus peels-derived biochar was examined based on the physical and chemical properties obtained from various analyses. The citrus peels biomass and biochar were characterized by means of higher heating value (HHV) analysis, field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX), Fourier transform infrared ray (FTIR) analysis, proximate and thermogravimetric analysis. Based on the characterization results, the potential usage of the derived biochar as a solid fuel was discussed. Results obtained from the pyrolysis experiments indicated that a lower pyrolysis temperature produced a higher char yield. The carbon content and energy content of biochar were found to be increasing with pyrolysis temperature. Biochar produced at 500 °C presented the best fuel properties by having the highest value of HHV and carbon content. The results from this study provided great insights into biomass waste reutilisation to generate value-added biochar for renewable energy production in Malaysia.
  16. Sankaran R, Parra Cruz RA, Pakalapati H, Show PL, Ling TC, Chen WH, et al.
    Bioresour Technol, 2020 Feb;298:122476.
    PMID: 31810736 DOI: 10.1016/j.biortech.2019.122476
    Microalgal and lignocellulosic biomass is the most sumptuous renewable bioresource raw material existing on earth. Recently, the bioconversion of biomass into biofuels have received significant attention replacing fossil fuels. Pretreatment of biomass is a critical process in the conversion due to the nature and structure of the biomass cell wall that is complex. Although green technologies for biofuel production are advancing, the productivity and yield from these techniques are low. Over the past years, various pretreatment techniques have been developed and successfully employed to improve the technology. This paper presents an in-depth review of the recent advancement of pretreatment methods focusing on microalgal and lignocellulosic biomass. The technological approaches involving physical, chemical, biological and other latest pretreatment methods are reviewed.
  17. Rajendran S, Blanco A, Gnanasekaran L, Jalil AA, Chen WH, Gracia F
    Chemosphere, 2023 Dec;345:140418.
    PMID: 37844702 DOI: 10.1016/j.chemosphere.2023.140418
    Carbon-integrated binary metal oxide semiconductors have gained prominence in the last decade as a better material for photocatalytic wastewater treatment technology. In this regard, this research describes the investigation of the binary metal oxide TiO2@Fe3O4 embedded on reduced graphene oxide (rGO) nanosheets synthesized through a combination of sol-gel, chemical precipitation, and Hummer's processes. Besides, the catalyst is applied for the photocatalytic degradation of organic chlorophenol pollutants. The characterized diffraction results showed the peak broadening of the rGO-TiO2@Fe3O4 composite formed with tetragonal and cubic structures having small crystallite sizes. The TEM observation shows an enormous miniature of TiO2@Fe3O4 nanospheres spread on the folded 2D-rGO nanosheets with a large BET surface area. The XPS result holds the mixed phases of Fe3O4 and Fe2O3. Finally, the catalyst demonstrated a low band gap with extended light absorption towards visible light irradiation. The synergistic interactions between Fe3+ and Fe2+ improved the visible light activity due to the incorporation of rGO, and also possessed good recycling capacity. The increased mobility of electrons at the interfaces of TiO2 and Fe3O4 due to the mixing of rGO results in the separation of charge carriers by elevating the photocatalytic degradation efficiency of chlorophenol.
  18. Oh S, Lee J, Lam SS, Kwon EE, Ha JM, Tsang DCW, et al.
    Bioresour Technol, 2021 Dec;342:126067.
    PMID: 34601023 DOI: 10.1016/j.biortech.2021.126067
    Recent studies show that fast hydropyrolysis (i.e., pyrolysis under hydrogen atmosphere operating at a rapid heating rate) is a promising technology for the conversion of biomass into liquid fuels (e.g., bio-oil and C4+ hydrocarbons). This pyrolysis approach is reported to be more effective than conventional fast pyrolysis in producing aromatic hydrocarbons and also lowering the oxygen content of the bio-oil obtained compared to hydrodeoxygenation (a common bio-oil upgrading method). Based on current literature, various non-catalytic and catalytic fast hydropyrolysis processes are reviewed and discussed. Efforts to combine fast hydropyrolysis and hydrotreatment process are also highlighted. Points to be considered for future research into fast hydropyrolysis and pending challenges are also discussed.
  19. Nusrat Aman AM, Selvarajoo A, Lau TL, Chen WH
    Chemosphere, 2023 Feb;313:137477.
    PMID: 36509190 DOI: 10.1016/j.chemosphere.2022.137477
    The use of sustainable materials in the construction industry has been on the rise recently. Studies have proven that the use of conventional concrete and its raw materials has a negative impact on the environment. Research on incorporating biochar as a supplementary cementitious material has been recently evolving and has shown that the attributes of biochar are highly affected by the pyrolysis parameters. These attributes have enhanced the properties of biochar concrete and mortar composite. This paper identifies the different physiochemical properties exhibited by palm kernel shell biochar through optimization by response surface methodology. Focusing on some of the properties of biochar that have proven beneficial when used as a cement replacement. Very limited research has used optimization tools for the production of biochar with the intention of using it as a cement substitute. Pyrolysis was conducted by a tubular furnace at different temperature ranges from 200 °C to 800 °C. The biomass and biochar have been analyzed with TGA and FESEM-EDX. The targeted biochar properties and selected responses are the yield, carbon, oxygen, silica, and potassium content. The optimized parameters obtained are 409 °C, 15 °C/min, 120 min with responses of 38.2% yield, 73.37% carbon, 25.48% oxygen, 0.39% potassium and 0.44% silica. Thermal properties of the palm kernel shell biochar affected by the pyrolysis factors such as temperature, heating rate and residence time have also been discussed. In conclusion, this study supports and encourages the use of palm waste, which is abundant in Malaysia, as a supplementary cementitious material to promote sustainable growth in construction.
  20. Nguyen TB, Nguyen TK, Chen CW, Chen WH, Bui XT, Lam SS, et al.
    Bioresour Technol, 2023 Aug;382:129182.
    PMID: 37210031 DOI: 10.1016/j.biortech.2023.129182
    In this study, biochar produced from sunflower seeds husk was activated through ZnCl2 to support the NiCo2O4 nanoparticles (NiCo2O4@ZSF) in catalytic activation of peroxymonosulfate (PMS) toward tetracycline (TC) removal from aqueous solution. The good dispersion of NiCo2O4 NPs on the ZSF surface provided sufficient active sites and abundant functional groups for the adsorption and catalytic reaction. The NiCo2O4@ZSF activating PMS showed high removal efficiency up to 99% after 30 min under optimal condition ([NiCo2O4@ZSF] = 25 mg L-1, [PMS] = 0.04 mM, [TC] = 0.02 mM and pH = 7). The catalyst also exhibited good adsorption performance with a maximum adsorption capacity of 322.58 mg g-1. Sulfate radicals (SO4•-), superoxide radical (O2•-), and singlet oxygen (1O2) played a decisive role in the NiCo2O4@ZSF/PMS system. In conclusion, our research elucidated the production of highly efficient carbon-based catalysts for environmental remediation, and also emphasized the potential application of NiCo2O4 doped biochar.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links