METHODS: A miR-524-5p precursor was introduced into human fibroblast HFF-1 in the presence of OSKM, and the relative number of embryonic stem cell (ESC)-like colonies that stained positively with alkaline phosphatase (AP) and Nanog were quantified to determine reprogramming efficiency. A miR-524-5p mimic was transfected to MSCs to investigate the effects of miR-524-5p on TP53INP1, ZEB2, and SMAD4 expression by real-time polymerase chain reaction (PCR) and Western blot. Direct gene targeting was confirmed by luciferase activity. A phylogenetic tree of TP53INP1 was constructed by the Clustal method. Contribution of miR-524-5p to cell proliferation and apoptosis was examined by cell counts, BrdU, MTT, and cell death assays, and pluripotency gene expression by real-time PCR.
RESULTS: Co-expressing the miR-524 precursor with OSKM resulted in a two-fold significant increase in the number of AP- and Nanog-positive ESC-like colonies, indicating a role for miR-524-5p in reprogramming. The putative target, TP53INP1, showed an inverse expression relationship with miR-524-5p; direct TP53INP1 targeting was confirmed in luciferase assays. miR-524-5p-induced TP53INP1 downregulation enhanced cell proliferation, suppressed apoptosis, and upregulated the expression of pluripotency genes, all of which are critical early events of the reprogramming process. Interestingly, the TP53INP1 gene may have co-evolved late with the primate-specific miR-524-5p. miR-524-5p also promoted mesenchymal-to-epithelial transition (MET), a required initial event of reprogramming, by directly targeting the epithelial-to-mesenchymal transition (EMT)-related genes, ZEB2 and SMAD4.
CONCLUSIONS: Via targeting TP53INP1, ZEB2, and SMAD4, miR-524-5p contributes to the early stage of inducing pluripotency by promoting cell proliferation, inhibiting apoptosis, upregulating expression of pluripotency genes, and enhancing MET. Other C19MC miRNAs may have similar reprogramming functions.
METHODOLOGY: Tracheal aspirates were obtained from neonates on ventilatory support. The SM test was carried out on specimens of tracheal aspirate immediately after collection. Levels of SP-A in tracheal aspirates were determined by enzyme-linked immunosorbent assay (ELISA) method. The results of the SM test and SP-A level of the tracheal aspirates were compared against the clinical diagnosis of RDS based on clinical, radiological and bacteriological findings.
RESULTS: Both the median microbubble counts (6 microbubbles/mm2, range = 0-90) and median SP-A levels (100 micrograms/L, range = 0-67447) of infants with RDS were significantly lower than those of infants with no obvious lung pathology (P < 0.0001), and pneumonia (P < 0.0001). The SM test of tracheal aspirates had higher overall accuracy for the diagnosis of RDS than measurement of SP-A levels (94.6% vs 82.4%). When the receiver operating characteristic (ROC) curves of both tests for RDS were compared, the area under the ROC curve of the SM test was larger (0.9689) than that of the SP-A method (0.8965).
CONCLUSIONS: This study showed that the SM test of tracheal aspirate was a useful bedside diagnostic test for RDS. It could be carried out at any time after birth on infants requiring ventilatory support.
METHODS: Patients aged 30-75 years who had severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 10-35) involving the MCA territory were recruited within 2 months of stroke onset. Using permuted block randomization, patients were assigned to receive 2 million BMMSCs per kilogram of body weight (treatment group) or standard medical care (control group). The primary outcomes were the NIHSS, modified Rankin Scale (mRS), Barthel Index (BI) and total infarct volume on brain magnetic resonance imaging (MRI) at 12 months. All outcome assessments were performed by blinded assessors. Per protocol, analyses were performed for between-group comparisons.
RESULTS: Seventeen patients were recruited. Nine were assigned to the treatment group, and eight were controls. All patients were severely disabled following their MCA infarct (median mRS = 4.0 [4.0-5.0], BI = 5.0 [5.0-25.0], NIHSS = 16.0 [11.5-21.0]). The baseline infarct volume on the MRI was larger in the treatment group (median, 71.7 [30.5-101.7] mL versus 26.7 [12.9-75.3] mL, P = 0.10). There were no between-group differences in median NIHSS score (7.0 versus 6.0, P = 0.96), mRS (2.0 versus 3.0, P = 0.38) or BI (95.0 versus 67.5, P = 0.33) at 12 months. At 12 months, there was significant improvement in absolute change in median infarct volume, but not in total infarct volume, from baseline in the treatment group (P = 0.027). No treatment-related adverse effects occurred in the BMMSC group.
CONCLUSIONS: Intravenous infusion of BMMSCs in patients with subacute MCA infarct was safe and well tolerated. Although there was no neurological recovery or functional outcome improvement at 12 months, there was improvement in absolute change in median infarct volume in the treatment group. Larger, well-designed studies are warranted to confirm this and the efficacy of BMMSCs in ischemic stroke.
Methods: Twenty-seven patients with history of anterior myocardial infarction (MI) and baseline left ventricular ejection fraction (LVEF) of less than 35% were recruited into this study. Patients who are eligible for revascularization were grouped into group A (MSCs infusion with concurrent revascularization) or group B (revascularization only) while patients who were not eligible for revascularization were allocated in group C to receive intracoronary MSCs infusion. LV function was measured using echocardiography.
Results: Patients who received MSCs infusion (either with or without revascularization) demonstrated significant LVEF improvements at 3, 6 and 12 months post-infusion when compared to baseline LVEF within its own group. When comparing the groups, the magnitude of change in LVEF from baseline for third visits i.e., 12 months post-infusion was significant for patients who received MSCs infusion plus concurrent revascularization in comparison to patients who only had the revascularization procedure.
Conclusions: MSCs infusion significantly improves LV function in ICM patients. MSCs infusion plus concurrent revascularization procedure worked synergistically to improve cardiac function in patients with severe ICM.