Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Kurniawan TA, Liang X, Goh HH, Dzarfan Othman MH, Anouzla A, Al-Hazmi HE, et al.
    J Environ Manage, 2024 Feb;351:119879.
    PMID: 38157574 DOI: 10.1016/j.jenvman.2023.119879
    In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.
  2. Najjar-Tabrizi R, Javadi A, Sharifan A, Chew KW, Lay CH, Show PL, et al.
    Biotechnol Rep (Amst), 2020 Sep;27:e00507.
    PMID: 32775231 DOI: 10.1016/j.btre.2020.e00507
    Saponin was extracted from Acanthophyllum glandulosum root under subcritical water conditions, and effects of root powder and pH of the solution were evaluated on the concentration of the saponin as manifested in its foamability and antioxidant activity using RSM. FT-IR analysis indicated that A. glandulosum root extract had 2 main functional groups (hydroxyl and amide I groups). Saponin with the highest foam height (4.66 cm), concentration (0.080 ppm) and antioxidant activity (90.6 %) was extracted using 10 g of the root powder and pH value of 4. Non-significant differences were observed between the predicted and experimental values of the extraction response variables. The study demonstrated good appropriateness of resulted models by Response Surface Methodology. Furthermore, higher values of R2 was attained for the foamability (>0.81) and antioxidant activity (>0.97), as well as large p-values (p > 0.05) indication of their lack-of-fit response verified the acceptable fitness of the provided models. The extracted saponin also showed bactericidal effect, which shows potential as a natural antibacterial compound.
  3. Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS
    Biotechnol Adv, 2020 11 01;43:107554.
    PMID: 32437732 DOI: 10.1016/j.biotechadv.2020.107554
    Microalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield. In recent years, novel genome editing tools like RNAi, ZNFs, TALENs, and CRISPR/Cas9 are used to enhance the quality and quantity of the desired products. Genetic and metabolic engineering are frequently applied because of their rapid and precise results than random mutagenesis. Omic approaches help enhance biorefinery capabilities and are now in the developing stage for algae. The future is very bright for transgenic algae with increased biomass yield, carbon dioxide uptake rate, accumulating high-value compounds, reduction in cultivation, and production costs, thus reaching the goal in the global algal market and capital flow. However, microalgae are primary producers and any harmful exposure to the wild strains can affect the entire ecosystem. Therefore, strict regulation and monitoring are required to assess the potential risks before introducing genetically modified microalgae into the natural ecosystem.
  4. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS
    Biotechnol Adv, 2020 12 30;47:107684.
    PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684
    The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
  5. Koyande AK, Chew KW, Show PL, Munawaroh HSH, Chang JS
    Bioresour Technol, 2021 Aug;333:125075.
    PMID: 33872996 DOI: 10.1016/j.biortech.2021.125075
    Microalgae are potential sustainable renewable sources of energy but are highly underutilized due to the expensive and time-consuming downstream processing. This study aims at curbing these obstacles by extracting multiple components with a single processing unit. In this work, an ultrasound-assisted liquid triphasic flotation system was incorporated to extract proteins, lipids, and carbohydrates by phase separation. The parameters involved were optimized and the final recovery efficiency of proteins, lipids, and carbohydrates was determined. A control run involving conventional three-phase partitioning and a 15-fold scale-up system with the recycling of phase components were also performed. Gas Chromatograph and Fourier Transform Infrared spectroscopy were used to examine the potential of extracted products as a source of biofuel. This biorefinery approach is crucial in commercializing microalgae for biodiesel and bioethanol generation with a side product of purified proteins as feed.
  6. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al.
    Bioresour Technol, 2017 Apr;229:53-62.
    PMID: 28107722 DOI: 10.1016/j.biortech.2017.01.006
    Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
  7. Chew KW, Chia SR, Show PL, Ling TC, Arya SS, Chang JS
    Bioresour Technol, 2018 Nov;267:356-362.
    PMID: 30029182 DOI: 10.1016/j.biortech.2018.07.069
    The present study investigates the prospective of substituting inorganic medium with organic food waste compost medium as a nutrient supplement for the cultivation of Chlorella vulgaris FSP-E. Various percentages of compost mixtures were replaced in the inorganic medium to compare the algal growth and biochemical composition. The use of 25% compost mixture combination was found to yield higher biomass concentration (11.1%) and better lipid (10.1%) and protein (2.0%) content compared with microalgae cultivation in fully inorganic medium. These results exhibited the potential of combining the inorganic medium with organic food waste compost medium as an effective way to reduce the cultivation cost of microalgae and to increase the biochemical content in the cultivated microalgae.
  8. Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, et al.
    Biotechnol J, 2018 Jun;13(6):e1700618.
    PMID: 29356369 DOI: 10.1002/biot.201700618
    Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO2 , NOx , SOx , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security.
  9. Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, et al.
    Bioresour Technol, 2020 May;304:122996.
    PMID: 32115347 DOI: 10.1016/j.biortech.2020.122996
    The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.
  10. Qian Y, Bian L, Wang K, Chia WY, Khoo KS, Zhang C, et al.
    Chemosphere, 2021 Mar;266:128948.
    PMID: 33220979 DOI: 10.1016/j.chemosphere.2020.128948
    In this study, to improve the mechanical and thermal properties of curdlan film, a curdlan/nanocellulose (NC) blended film was prepared and characterized for the first time. NC was successfully prepared from microcrystalline cellulose (MCC) with NaOH/urea treatment. The particle size of NC was observed to be 70-140 nm by cryo-electron microscope (cryo-EM). The blended film was prepared by adding the NC to curdlan solution. The tensile strength (TS) of the blended film reached the maximum value of 38.6 MPa, and the elongation at break (EB) was 40%. The DSC curve showed that the heat absorption peak of the film was 240 °C, indicating that the blended film has good temperature stability. Additionally, some other film properties were also improved, including gas barrier properties and transparency. Obvious morphological and molecular differences between the blended film and the pure curdlan film were discovered by SEM and FTIR analysis. Finally, the blended film was used for the preservation of chilled meat and extended the storage time of meat to 12 days. These results provided a theoretical basis for future application and development of biodegradable film.
  11. Foo WH, Chia WY, Tang DYY, Koay SSN, Lim SS, Chew KW
    J Hazard Mater, 2021 Sep 05;417:126129.
    PMID: 34229396 DOI: 10.1016/j.jhazmat.2021.126129
    Waste cooking oil (WCO) is considered as one of the hazardous wastes because improper disposal of WCO can cause significant environmental problems such as blockages of drains and sewers as well as water or soil pollution. In this review, the physical and chemical properties of WCO are evaluated along with its regulations and policies in different countries to promote WCO refined biofuels. Blended WCO can be an auxiliary fuel for municipal solid waste incinerators while the heat produced is able to form superheated steam and subsequently generate electricity via combined heat and power system. Also, WCO contains high ratio of hydrogen atoms compared to carbon and oxygen atoms, making it able to be catalytically cracked, synthesizing hydrogen gas. WCO-based biodiesel has been traditionally produced by transesterification in order to substitute petroleum-based diesel which has non-degradability as well as non-renewable features. Hence, the potentials of hazardous WCO as a green alternative energy source for electricity generation, hydrogen gas as well as biofuels production (e.g. biodiesel, biogas, biojet fuel) are critically discussed due to its attractive psychochemical properties as well as its economic feasibility. Challenges of the WCO utilization as a source of energy are also reported while highlighting its future prospects.
  12. Parthiban A, Gopal AAR, Siwayanan P, Chew KW
    J Hazard Mater, 2021 Sep 05;417:126107.
    PMID: 34020356 DOI: 10.1016/j.jhazmat.2021.126107
    Sulfur hexafluoride (SF6) is the most potent greenhouse gas contributed by the power and semiconductor industries. The global emissions of gas in the past 10 years have increased tremendously due to lack of disposal routes. This was brought to 190 nations' attention in the Kyoto Protocol for the need of emission control measures to reduce its impacts of climate change and global warming. Various novel techniques have surfaced to tackle this issue, such as non-thermal plasma (NTP) which includes radio frequency plasma, microwave plasma, dielectric barrier discharge, and electron beam. The main by-products resulting from the decomposition of SF6 by these techniques are sulfur oxyfluorides, sulfur dioxide, hydrofluoric acid, and fluorine gas. This environmental and health effects as well as global emission of SF6 gas are considered a threat to humans and the climate, where modern disposal methods of contaminated SF6 gas and its by-products should replace the conventional approaches. Relevant government policies on the safety and disposal concern of SF6 gas are reviewed and challenges and further research directions for the disposal of SF6 gas are highlighted in this review article.
  13. Pocha CKR, Chia SR, Chia WY, Koyande AK, Nomanbhay S, Chew KW
    Chemosphere, 2022 Mar;290:133246.
    PMID: 34906526 DOI: 10.1016/j.chemosphere.2021.133246
    The ever-growing human population has resulted in the expansion of agricultural activity; evident by the deforestation of rainfoamrests as a means of acquiring fertile land for crops. The crops and fruits produced by such means should be utilized completely; however, there are still losses and under-exploitation of these produces which has resulted in wastes being mounted in landfills. These underutilized agricultural wastes including vegetables and fruits can serve as a potential source for biofuels and green diesel. This paper discusses the main routes (e.g., biological and thermochemical) for producing biofuels such as bioethanol, biodiesel, biogas, bio-oil and green diesel from underutilized crops by emphasizing recent technological innovations for improving biofuels and green diesel yields. The future prospects of a successful production of biofuels and green diesel by this source are also explained. Underutilized lignocelluloses including fruits and vegetables serve as a prospective biofuel and green diesel generation source for the future prosperity of the biofuel industry.
  14. Khoo KS, Ho LY, Lim HR, Leong HY, Chew KW
    J Hazard Mater, 2021 Sep 05;417:126108.
    PMID: 34020352 DOI: 10.1016/j.jhazmat.2021.126108
    Coronavirus Diseases 2019 (COVID-19) pandemic has a huge impact on the plastic waste management in many countries due to the sudden surge of medical waste which has led to a global waste management crisis. Improper management of plastic waste may lead to various negative impacts on the environment, animals, and human health. However, adopting proper waste management and the right technologies, looking in a different perception of the current crisis would be an opportunity. About 40% of the plastic waste ended up in landfill, 25% incinerated, 16% recycled and the remaining 19% are leaked into the environment. The increase of plastic wastes and demand of plastic markets serve as a good economic indicator for investor and government initiative to invest in technologies that converts plastic waste into value-added product such as fuel and construction materials. This will close the loop of the life cycle of plastic waste by achieving a sustainable circular economy. This review paper will provide insight of the state of plastic waste before and during the COVID-19 pandemic. The treatment pathway of plastic waste such as sterilisation technology, incineration, and alternative technologies available in converting plastic waste into value-added product were reviewed.
  15. Kurniawan TA, Lo W, Othman MHD, Liang X, Goh HH, Chew KW
    J Environ Manage, 2023 Mar 01;329:117047.
    PMID: 36563449 DOI: 10.1016/j.jenvman.2022.117047
    This study investigated physico-chemical interactions among Cu(II), biogenic materials, and Fe2O3 in a continuous-flow biofilm reactor system under a well-controlled environment. The effects of Fe2O3 and bacterial biofilms on the distribution of Cu(II) in a simulated aquatic environment were studied. To control biological and abiotic elements in the marine environment, a biofilm reactor was designed to understand the metal speciation of Cu(II) and its distribution. The reactor consisted of a biofilm chamber equipped with glass slides for biofilms attachment. Due to its ability to grow as biofilm in the medium, Pseudomonas atlantica was cultivated to adsorb trace Cu(II) to attached and suspended cells. It was found that biofilms with 170-285 mequiv chemical oxygen demand (COD) concentration/m2 of total oxidizable materials accelerated the Cu(II) adsorption to the surface of the reactor significantly by a factor of five. A significant inhibition to the bacterial growth took place (p ≤ 0.05; t-test) when Cu(II) concentration was higher than 0.5 mg/L. In the absence of Cu(II), bacterial cells grew normally to 0.075 of optical density (OD). However, at the Cu(II) concentration of 0.2 mg/L, the cells grew to a lower OD of 0.58. The presence of glycine and EDTA substantially reduced the toxicity of Cu(II) on bacterial growth (p ≤ 0.05; paired t-test). Their complexation with Cu(II) rendered the metal ions less available to bacterial cells. This implies that the Fe2O3 and bacterial biofilm affected Cu(II) distribution and speciation in the aquatic environment.
  16. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Chong KK, et al.
    J Environ Manage, 2023 Apr 15;332:117429.
    PMID: 36773474 DOI: 10.1016/j.jenvman.2023.117429
    Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.
  17. Neo YT, Chia WY, Lim SS, Ngan CL, Kurniawan TA, Chew KW
    Food Res Int, 2023 Mar;165:112480.
    PMID: 36869493 DOI: 10.1016/j.foodres.2023.112480
    Production and extraction systems of algal protein and handling process of functional food ingredients need to control several parameters such as temperature, pH, intensity, and turbidity. Many researchers have investigated the Internet of Things (IoT) approach for enhancing the yield of microalgae biomass and machine learning for identifying and classifying microalgae. However, there have been few specific studies on using IoT and artificial intelligence (AI) for production and extraction of algal protein as well as functional food ingredients processing. In order to improve the production of algal protein and functional food ingredients, the implementation of smart system is a must to have real-time monitoring, remote control system, quick response to sudden events, prediction and characterisation. Techniques of IoT and AI are expected to help functional food industries to have a big breakthrough in the future. Manufacturing and implementation of beneficial smart systems are important to provide convenience and to increase the efficiency of work by using the interconnectivity of IoT devices to have good capturing, processing, archiving, analyzing, and automation. This review investigates the possibilities of implementation of IoT and AI in production and extraction of algal protein and processing of functional food ingredients.
  18. Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, et al.
    Chemosphere, 2023 Jun;325:138367.
    PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367
    The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
  19. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, et al.
    J Environ Manage, 2023 Jul 15;338:117765.
    PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765
    Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links