Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Chigurupati S, Dhanaraj SA, Balakumar P
    Eur J Pharmacol, 2015 May 15;755:50-7.
    PMID: 25748601 DOI: 10.1016/j.ejphar.2015.02.043
    Described since long as a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptors (PPARs) regulate the gene expression of proteins involved in glucose and lipid metabolism. PPARs indeed regulate several physiologic processes, including lipid homeostasis, adipogenesis, inflammation, and wound healing. PPARs bind natural or synthetic PPAR ligands can function as cellular sensors to regulate the gene transcription. Dyslipidemia, and type 2 diabetes mellitus (T2DM) with insulin resistance are treated using agonists of PPARα and PPARγ, respectively. The PPARγ is a key regulator of insulin sensitization and glucose metabolism, and therefore is considered as an imperative pharmacological target to combat diabetic metabolic disease and insulin resistance. Of note, currently available PPARγ full agonists like rosiglitazone display serious adverse effects such as fluid retention/oedema, weight gain, and increased incidence of cardiovascular events. On the other hand, PPARγ partial agonists are being suggested to devoid or having less incidence of these undesirable events, and are under developmental stages. Current research is on the way for the development of novel PPARγ partial agonists with enhanced therapeutic efficacy and reduced adverse effects. This review sheds lights on the current status of development of PPARγ partial agonists, for the management of T2DM, having comparatively less or no adverse effects to that of PPARγ full agonists.
  2. Chigurupati S, Selvaraj M, Mani V, Selvarajan KK, Mohammad JI, Kaveti B, et al.
    Bioorg Chem, 2016 08;67:9-17.
    PMID: 27231830 DOI: 10.1016/j.bioorg.2016.05.002
    The synthesis of novel indolopyrazoline derivatives (P1-P4 and Q1-Q4) has been characterized and evaluated as potential anti-Alzheimer agents through in vitro Acetylcholinesterase (AChE) inhibition and radical scavenging activity (antioxidant) studies. Specifically, Q3 shows AChE inhibition (IC50: 0.68±0.13μM) with strong DPPH and ABTS radical scavenging activity (IC50: 13.77±0.25μM and IC50: 12.59±0.21μM), respectively. While P3 exhibited as the second most potent compound with AChE inhibition (IC50: 0.74±0.09μM) and with DPPH and ABTS radical scavenging activity (IC50: 13.52±0.62μM and IC50: 13.13±0.85μM), respectively. Finally, molecular docking studies provided prospective evidence to identify key interactions between the active inhibitors and the AChE that furthermore led us to the identification of plausible binding mode of novel indolopyrazoline derivatives. Additionally, in-silico ADME prediction using QikProp shows that these derivatives fulfilled all the properties of CNS acting drugs. This study confirms the first time reporting of indolopyrazoline derivatives as potential anti-Alzheimer agents.
  3. Bera H, Chigurupati S
    Eur J Med Chem, 2016 Nov 29;124:992-1003.
    PMID: 27783978 DOI: 10.1016/j.ejmech.2016.10.032
    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.
  4. Appala RN, Chigurupati S, Appala RV, Krishnan Selvarajan K, Islam Mohammad J
    Scientifica (Cairo), 2016;2016:6897890.
    PMID: 27127683 DOI: 10.1155/2016/6897890
    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1-20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells.
  5. Noreen T, Taha M, Imran S, Chigurupati S, Rahim F, Selvaraj M, et al.
    Bioorg Chem, 2017 06;72:248-255.
    PMID: 28482265 DOI: 10.1016/j.bioorg.2017.04.010
    Twenty five derivatives of indole carbohydrazide (1-25) had been synthesized. These compounds were characterized using 1H NMR and EI-MS, and further evaluated for their α-amylase inhibitory potential. The analogs (1-25) showed varying degree of α-amylase inhibitory potential. ranging between 9.28 and 599.0µM when compared with standard acarbose having IC50 value 8.78±0.16µM. Six analogs, 25 (IC50=9.28±0.153µM), 22 (IC50=9.79±0.43µM), 4 (IC50=11.08±0.357µM), 1 (IC50=12.65±0.169µM), 8 (IC50=21.37±0.07µM) and 14 (IC50=43.21±0.14µM) showed potent α-amylase inhibition as compared to the standard acarbose (IC50=8.78±0.16µM). All other analogs displayed good to moderate inhibitory potential. Structure-activity relationship was established through the interaction of the active compounds with enzyme active site with the help of docking studies.
  6. Imran S, Taha M, Selvaraj M, Ismail NH, Chigurupati S, Mohammad JI
    Bioorg Chem, 2017 08;73:121-127.
    PMID: 28648924 DOI: 10.1016/j.bioorg.2017.06.007
    A series of twenty indole hydrazone analogs (1-21) were synthesized, characterized by different spectroscopic techniques such as 1H NMR and EI-MS, and screened for α-amylase inhibitory activity. All analogs showed a variable degree of α-amylase inhibition with IC50 values ranging between 1.66 and 2.65μM. Nine compounds that are 1 (2.23±0.01μM), 8 (2.44±0.12μM), 10 (1.92±0.12μM), 12 (2.49±0.17μM), 13 (1.66±0.09μM), 17 (2.25±0.1μM), 18 (1.87±0.25μM), 20 (1.83±0.63μM), and 19 (1.97±0.02μM) showed potent α-amylase inhibition when compared with the standard acarbose (1.05±0.29μM). Other analogs showed good to moderate α-amylase inhibition. The structure activity relationship is mainly focusing on difference of substituents on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds.
  7. Taha M, Imran S, Ismail NH, Selvaraj M, Rahim F, Chigurupati S, et al.
    Bioorg Chem, 2017 10;74:1-9.
    PMID: 28719801 DOI: 10.1016/j.bioorg.2017.07.001
    A new library of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives (1-23) were synthesized and characterized by EI-MS and 1H NMR, and screened for their α-amylase inhibitory activity. Out of twenty-three derivatives, two molecules 19 (IC50=0.38±0.82µM) and 23 (IC50=1.66±0.14µM), showed excellent activity whereas the remaining compounds, except 10 and 17, showed good to moderate inhibition in the range of IC50=1.77-2.98µM when compared with the standard acarbose (IC50=1.66±0.1µM). A plausible structure-activity relationship has also been presented. In addition, in silico studies was carried out in order to rationalize the binding interaction of compounds with the active site of enzyme.
  8. Taha M, Tariq Javid M, Imran S, Selvaraj M, Chigurupati S, Ullah H, et al.
    Bioorg Chem, 2017 10;74:179-186.
    PMID: 28826047 DOI: 10.1016/j.bioorg.2017.08.003
    α-Amylase is a target for type-2 diabetes mellitus treatment. However, small molecule inhibitors of α-amylase are currently scarce. In the course of developing small molecule α-amylase inhibitors, we designed and synthesized thiadiazole quinoline analogs (1-30), characterized by different spectroscopic techniques such as 1HNMR and EI-MS and screened for α-amylase inhibitory potential. Thirteen analogs 1, 2, 3, 4, 5, 6, 22, 23, 25, 26, 27, 28 and 30 showed outstanding α-amylase inhibitory potential with IC50 values ranges between 0.002±0.60 and 42.31±0.17μM which is many folds better than standard acarbose having IC50 value 53.02±0.12μM. Eleven analogs 7, 9, 10, 11, 12, 14, 15, 17, 18, 19 and 24 showed good to moderate inhibitory potential while seven analogs 8, 13, 16, 20, 21 and 29 were found inactive. Our study identifies novel series of potent α-amylase inhibitors for further investigation. Structure activity relationship has been established.
  9. Chigurupati S, Shaikh SA, Mohammad JI, Selvarajan KK, Nemala AR, Khaw CH, et al.
    Indian J Pharmacol, 2017 10 17;49(3):229-235.
    PMID: 29033482 DOI: 10.4103/ijp.IJP_293_16
    OBJECTIVES: In this study, three (CS-1 to CS-3) azomethine derivatives of cinnamaldehyde were green synthesized, characterized, and their antioxidant and antidepressant activities were explored.

    MATERIALS AND METHODS: The antioxidant effect of these compounds was initially performed in vitro using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay methods before subjecting them to in vivo experiments. Compounds showing potent antioxidant activity (CS-1 and CS-2) were investigated further for their antidepressant activity using the forced swim test (FST) and tail suspension test (TST). Ascorbic acid (AA) and fluoxetine (20 mg/kg, p.o) were used as reference drugs for comparison in the antioxidant and antidepressant experiments, respectively.

    RESULTS: It was observed that CS-2 and CS-3 exhibited highest DPPH (half maximal inhibitory concentration [IC50]: 16.22 and 25.18 μg/mL) and ABTS (IC50: 17.2 and 28.86 μg/mL) radical scavenging activity, respectively, compared to AA (IC50: 15.73 and 16.79 μg/mL) and therefore, both CS-2 and CS-3 were tested for their antidepressant effect using FST and TST as experimental models. Pretreatment of CS-2 and CS-3 (20 mg/kg) for 10 days considerably decreased the immobility time in both the FST and TST models.

    CONCLUSION: The antioxidant and antidepressant effect of CS-2 and CS-3 may be attributed to the presence of azomethine linkage in the molecule.

  10. Taha M, Irshad M, Imran S, Chigurupati S, Selvaraj M, Rahim F, et al.
    Eur J Med Chem, 2017 Dec 01;141:530-537.
    PMID: 29102178 DOI: 10.1016/j.ejmech.2017.10.028
    Piperazine Sulfonamide analogs (1-19) have been synthesized, characterized by different spectroscopic techniques and evaluated for α-amylase Inhibition. Analogs 1-19 exhibited a varying degree of α-amylase inhibitory activity with IC50 values ranging in between 1.571 ± 0.05 to 3.98 ± 0.397 μM when compared with the standard acarbose (IC50 = 1.353 ± 0.232 μM). Compound 1, 2, 3 and 7 showed significant inhibitory effects with IC50 value 2.348 ± 0.444, 2.064 ± 0.04, 1.571 ± 0.05 and 2.118 ± 0.204 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds.
  11. Taha M, Shah SAA, Imran S, Afifi M, Chigurupati S, Selvaraj M, et al.
    Bioorg Chem, 2017 12;75:78-85.
    PMID: 28918064 DOI: 10.1016/j.bioorg.2017.09.002
    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC50=0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies.
  12. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, et al.
    Sci Rep, 2017 12 05;7(1):16980.
    PMID: 29209017 DOI: 10.1038/s41598-017-17261-w
    Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
  13. Adegboye AA, Khan KM, Salar U, Aboaba SA, Kanwal, Chigurupati S, et al.
    Eur J Med Chem, 2018 Apr 25;150:248-260.
    PMID: 29533872 DOI: 10.1016/j.ejmech.2018.03.011
    Despite of many diverse biological activities exhibited by benzimidazole scaffold, it is rarely explored for the α-amylase inhibitory activity. For that purpose, 2-aryl benzimidazole derivatives 1-45 were synthesized and screened for in vitro α-amylase inhibitory activity. Structures of all synthetic compounds were deduced by various spectroscopic techniques. All compounds revealed inhibition potential with IC50 values of 1.48 ± 0.38-2.99 ± 0.14 μM, when compared to the standard acarbose (IC50 = 1.46 ± 0.26 μM). Limited SAR suggested that the variation in the inhibitory activities of the compounds are the result of different substitutions on aryl ring. In order to rationalize the binding interactions of most active compounds with the active site of α-amylase enzyme, in silico study was conducted.
  14. Tajudeen Bale A, Mohammed Khan K, Salar U, Chigurupati S, Fasina T, Ali F, et al.
    Bioorg Chem, 2018 09;79:179-189.
    PMID: 29763804 DOI: 10.1016/j.bioorg.2018.05.003
    Despite of a diverse range of biological activities associated with chalcones and bis-chalcones, they are still neglected by the medicinal chemist for their possible α-amylase inhibitory activity. So, the current study is based on the evaluation of this class for the identification of new leads as α-amylase inhibitors. For that purpose, a library of substituted chalcones 1-13 and bis-chalcones 14-18 were synthesized and characterized by spectroscopic techniques EI-MS and 1H NMR. CHN analysis was carried out and found in agreement with the calculated values. All compounds were evaluated for in vitro α-amylase inhibitory activity and demonstrated good activities in the range of IC50 = 1.25 ± 1.05-2.40 ± 0.09 µM as compared to the standard acarbose (IC50 = 1.04 ± 0.3 µM). Limited structure-activity relationship (SAR) was established by considering the effect of different groups attached to aryl rings on varying inhibitory activity. SMe group in chalcones and OMe group in bis-chalcones were found more influential on the activity than other groups. However, in order to predict the involvement of different groups in the binding interactions with the active site of α-amylase enzyme, in silico studies were also conducted.
  15. Taha M, Baharudin MS, Ismail NH, Imran S, Khan MN, Rahim F, et al.
    Bioorg Chem, 2018 10;80:36-42.
    PMID: 29864686 DOI: 10.1016/j.bioorg.2018.05.021
    In search of potent α-amylase inhibitor we have synthesized eighteen indole analogs (1-18), characterized by NMR and HR-EIMS and screened for α-amylase inhibitory activity. All analogs exhibited a variable degree of α-amylase inhibition with IC50 values ranging between 2.031 ± 0.11 and 2.633 ± 0.05 μM when compared with standard acarbose having IC50 values 1.927 ± 0.17 μM. All compounds showed good α-amylase inhibition. Compound 14 was found to be the most potent analog among the series. Structure-activity relationship has been established for all compounds mainly based on bringing about the difference of substituents on phenyl ring. To understand the binding interaction of the most active analogs molecular docking study was performed.
  16. Yousuf S, Khan KM, Salar U, Chigurupati S, Muhammad MT, Wadood A, et al.
    Eur J Med Chem, 2018 Nov 05;159:47-58.
    PMID: 30268823 DOI: 10.1016/j.ejmech.2018.09.052
    Acarbose and voglibose are well-known α-amylase inhibitors used for the management of type-II diabetes mellitus. Unfortunately, these well-known and clinically used inhibitors are also associated with several adverse effects. Therefore, there is still need to develop the safer therapy. Despite of a broad spectrum of biological significances of pyrazolone, it is infrequently evaluated for α-amylase inhibition. Current study deals with the synthesis and biological screening of aryl and arylidene substituted pyrazolones 1-18 for their potential α-amylase inhibitory activity. Structures of synthetic derivatives 1-18 were identified by different spectroscopic techniques. All compounds 1-18 (IC50 = 1.61 ± 0.16 μM to 2.38 ± 0.09 μM) exhibited significant to moderate inhibitory potential when compared to standard acarbose (IC50 = 1.46 ± 0.26 μM). A number of derivatives including 8-12 (IC50 = 1.68 ± 0.1 μM to 1.97 ± 0.07 μM) and 14-16 (IC50 = 1.61 ± 0.16 μM to 1.93 ± 0.07 μM) were found to be significantly active. Limited SAR suggested that different substitutions on compounds do not have any significant effect on the inhibitory potential. Compounds were found to be mixed-type inhibitors revealed by kinetic studies. However, in silico study was identified a number of key features participating in the interaction with the binding site of α-amylase enzyme.
  17. Khan M, Alam A, Khan KM, Salar U, Chigurupati S, Wadood A, et al.
    Bioorg Chem, 2018 12;81:157-167.
    PMID: 30125730 DOI: 10.1016/j.bioorg.2018.07.038
    Novel derivatives of flurbiprofen 1-18 including flurbiprofen hydrazide 1, substituted aroyl hydrazides 2-9, 2-mercapto oxadiazole derivative 10, phenacyl substituted 2-mercapto oxadiazole derivatives 11-15, and benzyl substituted 2-mercapto oxadiazole derivatives 16-18 were synthesized and characterized by EI-MS, 1H and 13C NMR spectroscopic techniques. All derivatives 1-18 were screened for α-amylase inhibitory activity and demonstrated a varying degree of potential ranging from IC50 = 1.04 ± 0.3 to 2.41 ± 0.09 µM as compared to the standard acarbose (IC50 = 0.9 ± 0.04 µM). Out of eighteen compounds, derivatives 2 (IC50 = 1.69 ± 0.1 µM), 3 (IC50 = 1.04 ± 0.3 µM), 9 (IC50 = 1.25 ± 1.05 µM), and 13 (IC50 = 1.6 ± 0.18 µM) found to be excellent inhibitors while rest of the compounds demonstrated comparable inhibition potential. A limited structure-activity relationship (SAR) was established by looking at the varying structural features of the library. In addition to that, in silico study was conducted to understand the binding interactions of the compounds (ligands) with the active site of α-amylase enzyme.
  18. Karunanidhi A, Ghaznavi-Rad E, Hamat RA, Pichika MR, Lung LTT, Mohd Fauzi F, et al.
    Biomed Res Int, 2018;2018:9845075.
    PMID: 30105271 DOI: 10.1155/2018/9845075
    The present study assessed the in vitro antibacterial and antibiofilm potential of hexane (ASHE) and dichloromethane (ASDE) extracts of Allium stipitatum (Persian shallot) against planktonic cells and biofilm structures of clinically significant antibiotic resistant pathogens, with a special emphasis on methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and emerging pathogens, Acinetobacter baumannii and Stenotrophomonas maltophilia. Antibacterial activities were determined through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill kinetics, and electron microscopy. Antibiofilm activity was assessed by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay and by confocal laser scanning microscopy (CLSM). The zone of inhibition ranged from 13 to 33 mm, while the MICs and MBCs ranged from 16 to 1024 μg mL-1. Both ASHE and ASDE completely eradicated overnight cultures of the test microorganisms, including antibiotic resistant strains. Time-kill studies showed that the extracts were strongly bactericidal against planktonic cultures of S. aureus, MRSA, Acinetobacter baumannii, and S. maltophilia as early as 4 hours postinoculation (hpi). ASHE and ASDE were shown to inhibit preformed biofilms of the four biofilm phenotypes tested. Our results demonstrate the potential therapeutic application of ASHE and ASDE to inhibit the growth of gram-positive and gram-negative biofilms of clinical significance and warrant further investigation of the potential of A. stipitatum bulbs against biofilm-related drug resistance.
  19. Karunanidhi A, Ghaznavi-Rad E, Jeevajothi Nathan J, Joseph N, Chigurupati S, Mohd Fauzi F, et al.
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871159 DOI: 10.3390/molecules24061003
    Antibiotic resistance is a problem that continues to challenge the healthcare sector, especially in clinically significant pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Herein is described the isolation and structure elucidation of a bioactive compound from Allium stipitatum with antimicrobial activity. Crude Allium stipitatum dichloromethane extract (ASDE) was subjected to systematic purification by chromatographic procedures to afford various bioactive fractions. A fraction that exhibited anti-MRSA activity (4 µg·mL-1) was further characterized to determine the structure. The structure of the compound was elucidated as 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN). The 2-Medpy-3-CN compound, which was screened for antimicrobial activity, exhibited minimum inhibitory concentrations (MICs) in the range of 0.5 to >64 µg·mL-1 for tested bacterial species and 0.25 to 2 µg·mL-1 for Candida spp. Further studies are important to confirm the drug target and mechanism of action.
  20. Islam MJ, Roshid B, Pervin S, Kabir S, Chigurupati S, Hasan MN
    Mymensingh Med J, 2019 Apr;28(2):484-489.
    PMID: 31086172
    Approximately 80% ovarian tumors are benign, and these arise mostly in young adult females. Malignant tumors are more prevalent in ageing women, between the ages of 45-65 years. Mucinous ovarian cancer represents about 5% of epithelial ovarian cancers (EOC). We have reported a case of mucinous cystadenocarcinoma in 35-year-old lady with metastasis to momentum. Imaging (Radiograph & CT scan) studies showed a large right sided pelvic mass with probable origin in the right ovary. Cancer antigen-125 was elevated, while carcinoembrionic antigen and alpha-fetoprotein were normal. Mutational profiles shown distinct finding, as KRAS mutations positive nevertheless p53 and BRCA mutations are absent. She had undergone total abdominal hysterectomy with bilateral salphingo-oopherectomy along with pelvic dissection for removal of lymph nodes at the age of 35. She was given 3 cycles of chemotherapy with cisplatin and paclitaxel. To the best of our knowledge, this is the one of the little cases of ovarian mucinous cystadenocarcinoma being reported at a relatively young age and the first case being reported from Bangladesh.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links