Displaying all 11 publications

Abstract:
Sort:
  1. Sulaiman AZ, Ajit A, Chisti Y
    Biotechnol Prog, 2013 Nov-Dec;29(6):1448-57.
    PMID: 23926080 DOI: 10.1002/btpr.1786
    A recombinant Trichoderma reesei cellulase was used for the ultrasound-mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4-11.8 W cm(-2) sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis-Menten kinetics. The Michaelis-Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm(-2) . Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm(-2) power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose.
  2. Gumel AM, Annuar MS, Chisti Y, Heidelberg T
    Ultrason Sonochem, 2012 May;19(3):659-67.
    PMID: 22105013 DOI: 10.1016/j.ultsonch.2011.10.016
    Ultrasonic irradiation greatly improved the Candida antarctica lipase B mediated ring opening polymerization of ε-caprolactone to poly-6-hydroxyhexanoate in the ionic liquid 1-ethyl-3-methylimidazolium tetraflouroborate. Compared to the conventional nonsonicated reaction, sonication improved the monomer conversion by 63% and afforded a polymer product of a narrower molecular weight distribution and a higher degree of crystallinity. Under sonication, the polydispersity index of the product was ~1.44 compared to a value of ~2.55 for the product of the conventional reaction. With sonication, nearly 75% of the monomer was converted to product, but the conversion was only ~16% for the reaction carried out conventionally. Compared to conventional operation, sonication enhanced the rate of polymer propagation by >2-fold and the turnover number of the lipase by >3-fold.
  3. Gumel AM, Annuar MS, Heidelberg T, Chisti Y
    Bioresour Technol, 2011 Oct;102(19):8727-32.
    PMID: 21816608 DOI: 10.1016/j.biortech.2011.07.024
    Lipase-catalyzed synthesis of 6-O-glucosyldecanoate from d-glucose and decanoic acid was performed in dimethyl sulfoxide (DMSO), a mixture of DMSO and tert-butanol and tert-butanol alone with a decreasing order of polarity. The highest conversion yield (> 65%) of decanoic acid was obtained in the blended solvent of intermediate polarity mainly because it could dissolve relatively large amounts of both the reactants. The reaction obeyed Michaelis-Menten type of kinetics. The affinity of the enzyme towards the limiting substrate (decanoic acid) was not affected by the polarity of the solvent, but increased significantly with temperature. The esterification reaction was endothermic with activation energy in the range of 60-67 kJ mol⁻¹. Based on the Gibbs energy values, in the solvent blend of DMSO and tert-butanol the position of the equilibrium was shifted more towards the products compared to the position in pure solvents. Monoester of glucose was the main product of the reaction.
  4. Palanisamy KM, Paramasivam P, Maniam GP, Rahim MHA, Govindan N, Chisti Y
    J Biotechnol, 2021 Feb 10;327:86-96.
    PMID: 33421508 DOI: 10.1016/j.jbiotec.2020.12.021
    Biomass and lipid production by the marine diatom Chaetoceros affinis were characterized under continuous light with aeration. Media based on palm oil mill effluent (POME; 10, 20 and 30 % v/v in distilled water) were used together with a standard control medium. The maximum biomass concentration on day 12 of batch cultures in control medium was 821 ± 71 mg L-1. Under identical conditions, in the best POME medium (20 % POME v/v in distilled water with other inorganic components), the biomass concentration was reduced by ∼11 % to 734 ± 66 mg L-1. The lipid content of the biomass grown in the control medium was 50.8 ± 4.5 % by dry weight, but was a little lower (48.9 ± 4.1 % by dry wt) in the above specified best POME medium. In the best POME medium, oleic acid was the major fatty acid (72.3 ± 5.2 % by weight) in the total lipids extracted from the biomass and monounsaturated fatty acids were the main type of fatty acids (74.6 ± 5.2 %). POME levels of >20 % in the medium suppressed both biomass and lipid production relative to the medium with 20 % POME.
  5. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
  6. Chua GK, Abdul-Rahman B, Chisti Y
    Biotechnol Prog, 2013 Jan-Feb;29(1):154-64.
    PMID: 23125182 DOI: 10.1002/btpr.1656
    The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17-hydroxyprogesterone (17-OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 10(6) cells mL(-1) and the specific growth rate was 0.036 ± 0.004 h(-1) . The maximum MAb titer was 11.94 ± 4.81 μg mL(-1) with an average specific MAb production rate of 0.273 ± 0.135 pg cell(-1) h(-1) . A constant impeller tip speed criterion was used for the scale-up. The specific growth rate (0.040 h(-1) ) and the maximum viable cell density (1.89 × 10(6) cells mL(-1) ) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T-flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17-OHP) and did not compromise the structural integrity of the MAb.
  7. Palachum W, Klangbud WK, Chisti Y
    Heliyon, 2023 Nov;9(11):e21873.
    PMID: 38027860 DOI: 10.1016/j.heliyon.2023.e21873
    The objective of this research was to develop a nutritionally-enriched gummy jelly product incorporating nipa palm vinegar powder (NPVp; a nutrients-rich vinegar) and nipa palm syrup (NPS), a nutrients-rich sweetener with a low glycemic index. A gummy jelly product was developed based on sensory acceptance tests. The water activity and the moisture content of the final product were within the acceptable range for preservation under ambient conditions. The final product had a total phenolic content of 861 μg gallic acid equivalent (GAE) per g and an antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition) of 72.7 %. The final product had the following nutritional attributes (per 100 g dry mass): 319.7 kcal of energy, 8.8 g protein, 0.2 g fats, 70.6 g carbohydrates, 59.9 g total sugars, 0.7 g of total dietary fibers, 34.6 mg calcium, 0.3 mg iron, 168.0 mg sodium, and 774.7 mg vitamin C. The in vitro glycemic index of the product was 27.4. Based on their nutrients-content, NPVp and NPS were suitable for use in other functional food products.
  8. Saat MN, Annuar MS, Alias Z, Chuan LT, Chisti Y
    Bioprocess Biosyst Eng, 2014 May;37(5):765-75.
    PMID: 24005762 DOI: 10.1007/s00449-013-1046-8
    Production of extracellular laccase by the white-rot fungus Pycnoporus sanguineus was examined in batch submerged cultures in shake flasks, baffled shake flasks and a stirred tank bioreactor. The biomass growth in the various culture systems closely followed a logistic growth model. The production of laccase followed a Luedeking-Piret model. A modified Luedeking-Piret model incorporating logistic growth effectively described the consumption of glucose. Biomass productivity, enzyme productivity and substrate consumption were enhanced in baffled shake flasks relative to the cases for the conventional shake flasks. This was associated with improved oxygen transfer in the presence of the baffles. The best results were obtained in the stirred tank bioreactor. At 28 °C, pH 4.5, an agitation speed of 600 rpm and a dissolved oxygen concentration of ~25 % of air saturation, the laccase productivity in the bioreactor exceeded 19 U L(-1 )days(-1), or 1.5-fold better than the best case for the baffled shake flask. The final concentration of the enzyme was about 325 U L(-1).
  9. Gumel AM, Annuar MS, Chisti Y
    Ultrason Sonochem, 2013 May;20(3):937-47.
    PMID: 23231942 DOI: 10.1016/j.ultsonch.2012.09.015
    Four different lipases were compared for ultrasound-mediated synthesis of the biodegradable copolymer poly-4-hydroxybutyrate-co-6-hydroxyhexanoate. The copolymerization was carried out in chloroform. Of the enzymes tested, Novozym 435 exhibited the highest copolymerization rate, in fact the reaction rate was observed to increase with about 26-fold from 30 to 50°C (7.9×10(-3)Ms(-1)), sonic power intensity of 2.6×10(3)Wm(-2) and dissipated energy of 130.4Jml(-1). Copolymerization rates with the Candida antarctica lipase A, Candida rugosa lipase, and Lecitase Ultra™ were lower at 2.4×10(-4), 1.3×10(-4) and 3.5×10(-4)Ms(-1), respectively. The catalytic efficiency depended on the enzyme. The efficiency ranged from 4.15×10(-3)s(-1)M(-1) for Novozym 435-1.48×10(-3)s(-1)M(-1) for C. rugosa lipase. Depending on the enzyme and sonication intensity, the monomer conversion ranged from 8.2% to 48.5%. The sonication power, time and temperature were found to affect the rate of copolymerization. Increasing sonication power intensity from 1.9×10(3) to 4.5×10(3)Wm(-2) resulted in an increased in acoustic pressure (P(a)) from 3.7×10(8) to 5.7×10(8)Nm(-2) almost 2.4-3.7 times greater than the acoustic pressure (1.5×10(8)Nm(-2)) that is required to cause cavitation in water. A corresponding acoustic particle acceleration (a) of 9.6×10(3)-1.5×10(4)ms(-2) was calculated i.e. approximately 984-1500 times greater than under the action of gravity.
  10. Salehmin MN, Annuar MS, Chisti Y
    Bioprocess Biosyst Eng, 2013 Nov;36(11):1527-43.
    PMID: 23539203 DOI: 10.1007/s00449-013-0943-1
    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.
  11. Shene C, Leyton A, Flores L, Chavez D, Asenjo JA, Chisti Y
    Biotechnol Bioeng, 2024 Mar 18.
    PMID: 38500406 DOI: 10.1002/bit.28689
    Marine thraustochytrids produce metabolically important lipids such as the long-chain omega-3 polyunsaturated fatty acids, carotenoids, and sterols. The growth and lipid production in thraustochytrids depends on the composition of the culture medium that often contains yeast extract as a source of amino acids. This work discusses the effects of individual amino acids provided in the culture medium as the only source of nitrogen, on the production of biomass and lipids by the thraustochytrid Thraustochytrium sp. RT2316-16. A reconstructed metabolic network based on the annotated genome of RT2316-16 in combination with flux balance analysis was used to explain the observed growth and consumption of the nutrients. The culture kinetic parameters estimated from the experimental data were used to constrain the flux via the nutrient consumption rates and the specific growth rate of the triacylglycerol-free biomass in the genome-scale metabolic model (GEM) to predict the specific rate of ATP production for cell maintenance. A relationship was identified between the specific rate of ATP production for maintenance and the specific rate of glucose consumption. The GEM and the derived relationship for the production of ATP for maintenance were used in linear optimization problems, to successfully predict the specific growth rate of RT2316-16 in different experimental conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links