Displaying all 13 publications

Abstract:
Sort:
  1. Su G, Ong HC, Ibrahim S, Fattah IMR, Mofijur M, Chong CT
    Environ Pollut, 2021 Jun 15;279:116934.
    PMID: 33744627 DOI: 10.1016/j.envpol.2021.116934
    The COVID-19 pandemic has exerted great shocks and challenges to the environment, society and economy. Simultaneously, an intractable issue appeared: a considerable number of hazardous medical wastes have been generated from the hospitals, clinics, and other health care facilities, constituting a serious threat to public health and environmental sustainability without proper management. Traditional disposal methods like incineration, landfill and autoclaving are unable to reduce environmental burden due to the issues such as toxic gas release, large land occupation, and unsustainability. While the application of clean and safe pyrolysis technology on the medical wastes treatment to produce high-grade bioproducts has the potential to alleviate the situation. Besides, medical wastes are excellent and ideal raw materials, which possess high hydrogen, carbon content and heating value. Consequently, pyrolysis of medical wastes can deal with wastes and generate valuable products like bio-oil and biochar. Consequently, this paper presents a critical and comprehensive review of the pyrolysis of medical wastes. It demonstrates the feasibility of pyrolysis, which mainly includes pyrolysis characteristics, product properties, related problems, the prospects and future challenges of pyrolysis of medical wastes.
  2. Dharmaraj S, Ashokkumar V, Hariharan S, Manibharathi A, Show PL, Chong CT, et al.
    Chemosphere, 2021 Jun;272:129601.
    PMID: 33497928 DOI: 10.1016/j.chemosphere.2021.129601
    Recently, the COVID-19 disease spread has emerged as a worldwide pandemic and cause severe threats to humanity. The World Health Organisation (WHO) releases guidelines to help the countries to reduce the spread of this virus to the public, like wearing masks, hand hygiene, social distancing, shutting down all types of public transports, etc. These conditions led to a worldwide economic fall drastically, and on the other hand, indirect environmental benefits like global air quality improvement and decreased water pollution are also pictured. Currently, use of face masks is part of a comprehensive package of the prevention and control measures that can limit the spread of COVID-19 since there is no clinically proven drugs or vaccine available for COVID-19. Mostly, face masks are made of petroleum-based non-renewable polymers that are non-biodegradable, hazardous to the environment and create health issues. This study demonstrates the extensive use of the face mask and how it affects human health and the marine ecosystem. It has become a great challenge for the government sectors to impose strict regulations for the proper disposal of the masks as medical waste by the public. Neglecting the seriousness of this issue may lead to the release of large tonnes of micro-plastics to the landfill as well as to the marine environment where mostly end-up and thereby affecting their fauna and flora population vastly. Besides, this study highlights the COVID-19 spread, its evolutionary importance, taxonomy, genomic structure, transmission to humans, prevention, and treatment.
  3. Ganapathy K, Saleha AA, Jaganathan M, Tan CG, Chong CT, Tang SC, et al.
    Vet Rec, 2007 May 05;160(18):622-4.
    PMID: 17483380
    House crows (Corvus splendens) in Selangor, Malaysia were examined for the presence of Campylobacter species, Salmonella species, Mycoplasma gallisepticum and Mycoplasma synoviae by serology, culture and pcr. For the detection of Campylobacter and Salmonella species swabs were taken either from the intestine or cloaca. For the detection of mycoplasmas, swabs were taken either from the choanal cleft or trachea for culture and pcr and serum samples were tested by the rapid serum agglutination (rsa) and monoclonal antibody-blocking elisa (mbelisa) for antibodies to M gallisepticum and M synoviae. For campylobacter, 25.3 per cent of the crows were positive by culture, and the species identified were Campylobacter jejuni and Campylobacter coli. No Salmonella species were isolated. Four of 24 swabs were positive for M gallisepticum dna but none gave positive results for M synoviae dna. No M gallisepticum or M synoviae antibodies were detected by rsa but 60 per cent of the sera gave positive reactions for M gallisepticum and 13 per cent gave positive reactions for M synoviae by mbelisa.
  4. Lam SS, Liew RK, Cheng CK, Rasit N, Ooi CK, Ma NL, et al.
    J Environ Manage, 2018 May 01;213:400-408.
    PMID: 29505995 DOI: 10.1016/j.jenvman.2018.02.092
    Fruit peel, an abundant waste, represents a potential bio-resource to be converted into useful materials instead of being dumped in landfill sites. Palm oil mill effluent (POME) is a harmful waste that should also be treated before it can safely be released to the environment. In this study, pyrolysis of banana and orange peels was performed under different temperatures to produce biochar that was then examined as adsorbent in POME treatment. The pyrolysis generated 30.7-47.7 wt% yield of a dark biochar over a temperature ranging between 400 and 500 °C. The biochar contained no sulphur and possessed a hard texture, low volatile content (≤34 wt%), and high amounts of fixed carbon (≥72 wt%), showing durability in terms of high resistance to chemical reactions such as oxidation. The biochar showed a surface area of 105 m2/g and a porous structure containing mesopores, indicating its potential to provide many adsorption sites for use as an adsorbent. The use of the biochar as adsorbent to treat the POME showed a removal efficiency of up to 57% in reducing the concentration of biochemical oxygen demand (BOD), chemical oxygen demand COD, total suspended solid (TSS) and oil and grease (O&G) of POME to an acceptable level below the discharge standard. Our results indicate that pyrolysis shows promise as a technique to transform banana and orange peel into value-added biochar for use as adsorbent to treat POME. The recovery of biochar from fruit waste also shows advantage over traditional landfill approaches in disposing this waste.
  5. Chong CT, Lai WK, Mohd Sallehuddin S, Ganapathy SS
    PLoS One, 2023;18(8):e0283270.
    PMID: 37531379 DOI: 10.1371/journal.pone.0283270
    The World Health Organization has reported that the prevalence of overweight is a growing problem in many countries, including middle- and lower-income countries like Malaysia. This study aimed to determine the prevalence of overweight and its associated factors among Malaysian adults. A total of 9782 Malaysian adults aged 18 and above were included in this study, representing states and federal territories from the National Health and Morbidity Survey 2019. Sociodemographic data (sex, locality, age, marital status, ethnicity, educational level, income level, and health literacy), non-communicable disease status (hypertension, diabetes, and hypercholesterolemia), and lifestyle behaviours (physical activity level, smoking status, and also fruit and vegetable consumption) were collected and analysed to identify factors associated with overweight. The study found that the prevalence of overweight among Malaysian adults was 50.1%. Multivariate analyses showed that several factors, including female gender [aOR (95% CI) = 1.33 (1.11, 1.58); p = .002], ages 30-59 years [aOR (95% CI) = 1.61 (1.31, 1.97); p < .001], being Malay [aOR (95% CI) = 1.68 (1.36, 2.07); p < .001], Indian [aOR (95% CI) = 2.59 (1.80, 3.74); p < .001] or other Bumiputera [aOR (95% CI) = 1.82 (1.38, 2.39); p < .001], being married [aOR (95% CI) = 1.23 (1.00, 1.50); p = .046], and having adequate health literacy [aOR (95% CI) = 1.19 (1.01, 1.39); p = .033], were significantly associated with an increased risk of overweight. Additionally, overweight individuals had a significantly higher risk of non-communicable diseases such as diabetes [aOR (95% CI) = 1.47 (1.23, 1.75); p < .001] and hypertension [aOR (95% CI) = 2.60 (2.20, 3.07); p < .001]. The study suggests that intervention programs should be implemented in an equitable and cost-effective manner to target these high-risk populations and address the burden of overweight in Malaysia.
  6. Chong CT, Lai WK, Zainuddin AA, Pardi M, Mohd Sallehuddin S, Ganapathy SS
    Asia Pac J Public Health, 2022 Nov;34(8):786-792.
    PMID: 36196901 DOI: 10.1177/10105395221129113
    In 2016, World Health Organization (WHO) estimated more than 650 million obese adults, resulting in a country's health burden. This study aims to determine the prevalence of obesity and its associated factors among Malaysian adults. A total of 5820 respondents, aged 18 to 59 years, from the National Health and Morbidity Survey 2019, were included for the data analysis. The prevalence of obesity was described and multivariate analyses were conducted to determine the factors associated with obesity. The prevalence of obesity among Malaysian adults was 20.1%, based on the findings from this study. Multivariate analyses showed that women, being Malays, Indians, and other Bumiputeras, were significantly associated with a higher risk of obesity. Besides, those diagnosed with diabetes mellitus and hypertension were also significantly associated with greater risk of obesity. This information is crucial for policy makers in formulating effective strategies or targeted programs in preventing obesity among Malaysian adults.
  7. Chong CT, Fan YV, Lee CT, Klemeš JJ
    Energy (Oxf), 2022 Feb 15;241:122801.
    PMID: 36570560 DOI: 10.1016/j.energy.2021.122801
    This review covers the recent advancements in selected emerging energy sectors, emphasising carbon emission neutrality and energy sustainability in the post-COVID-19 era. It benefited from the latest development reported in the Virtual Special Issue of ENERGY dedicated to the 6th International Conference on Low Carbon Asia and Beyond (ICLCA'20) and the 4th Sustainable Process Integration Laboratory Scientific Conference (SPIL'20). As nations bind together to tackle global climate change, one of the urgent needs is the energy sector's transition from fossil-fuel reliant to a more sustainable carbon-free solution. Recent progress shows that advancement in energy efficiency modelling of components and energy systems has greatly facilitated the development of more complex and efficient energy systems. The scope of energy system modelling can be based on temporal, spatial and technical resolutions. The emergence of novel materials such as MXene, metal-organic framework and flexible phase change materials have shown promising energy conversion efficiency. The integration of the internet of things (IoT) with an energy storage system and renewable energy supplies has led to the development of a smart energy system that effectively connects the power producer and end-users, thereby allowing more efficient management of energy flow and consumption. The future smart energy system has been redefined to include all energy sectors via a cross-sectoral integration approach, paving the way for the greater utilization of renewable energy. This review highlights that energy system efficiency and sustainability can be improved via innovations in smart energy systems, novel energy materials and low carbon technologies. Their impacts on the environment, resource availability and social well-being need to be holistically considered and supported by diverse solutions, in alignment with the sustainable development goal of Affordable and Clean Energy (SDG 7) and other related SDGs (1, 8, 9, 11,13,15 and 17), as put forth by the United Nations.
  8. Lam SS, Wan Mahari WA, Ma NL, Azwar E, Kwon EE, Peng W, et al.
    Chemosphere, 2019 Sep;230:294-302.
    PMID: 31108440 DOI: 10.1016/j.chemosphere.2019.05.054
    Used baby diaper consists of a combination of decomposable cellulose, non-biodegradable plastic materials (e.g. polyolefins) and super-absorbent polymer materials, thus making it difficult to be sorted and separated for recycling. Microwave pyrolysis was examined for its potential as an approach to transform used baby diapers into value-added products. Influence of the key operating parameters comprising process temperature and microwave power were investigated. The pyrolysis showed a rapid heating process (up to 43 °C/min of heating rate) and quick reaction time (20-40 min) in valorizing the used diapers to generate pyrolysis products comprising up to 43 wt% production of liquid oil, 29 wt% gases and 28 wt% char product. Microwave power and operating temperature were observed to have impacts on the heating rate, process time, production and characteristics of the liquid oil and solid char. The liquid oil contained alkanes, alkenes and esters that can potentially be used as chemical additives, cosmetic products and fuel. The solid char contained high carbon, low nitrogen and free of sulphur, thus showing potential for use as adsorbents and soil additives. These observations demonstrate that microwave pyrolysis has great prospect in transforming used baby diaper into liquid oil and char products that can be utilised in several applications.
  9. Chong CT, Ng JH
    Nat Commun, 2023 Dec 09;14(1):8156.
    PMID: 38071199 DOI: 10.1038/s41467-023-44049-6
    Renewable jet fuel (RJF) is often touted as the only viable sustainable energy source for the aviation sector, given the difficulties faced by other low-carbon energy sources in overcoming technological barriers. Despite that, the sustainability of RJF is still in dispute due to the conflicting requirements in natural resource for producing the fuels. We introduce a holistic 25-indicator sustainability index encompassing the four domains of energy-water-food nexus and governance, that measures the potential impact of RJF production on 154 countries (and territories) through the oil-to-jet, alcohol-to-jet and gas-to-jet conversion methods. Countries and territories are ranked according to the composite index scores of the four domains. The sustainability index model provides insights on how RJF affords the aviation sector a clean slate in determining the manner of development in a sustainably and equitable way, while also marching towards the long-term goal of carbon neutrality, in alignment with the Sustainable Development Goals.
  10. How MI, Lee PK, Wei TS, Chong CT
    Int J Surg Case Rep, 2015;11:56-58.
    PMID: 25931302 DOI: 10.1016/j.ijscr.2015.04.003
    INTRODUCTION: Compartment syndrome isolated to the anterior thigh is a rare complication of soccer injury. Previous reports in the English literature on sports trauma-related compartment syndrome of the thigh are vague in their description of the response of thigh musculature to blunt trauma, magnetic resonance imaging (MRI) findings of high-risk features of compartment syndrome, vascular injury in quadriceps trauma, and the role of vascular study in blunt thigh injury.

    CASE REPORT: We present herein the rare case of a 30-year-old man who developed thigh compartment syndrome 8 days after soccer injury due to severe edema of vastus intermedius and large thigh hematoma secondary to rupture of the profunda femoris vein. MRI revealed "blow-out" rupture of the vastus lateralis. Decompressive fasciotomy and vein repair performed with subsequent split-skin grafting of the wound defect resulted in a good functional outcome at 2-years follow-up.

    CONCLUSION: A high index of suspicion for compartment syndrome is needed in all severe quadriceps contusion. Vascular injury can cause thigh compartment syndrome in sports trauma. MRI findings of deep thigh muscle swelling and "blow-out" tear of the vastus lateralis are strongly suggestive of severe quadriceps injury, and may be a harbinger of delayed thigh compartment syndrome.

  11. Su G, Ong HC, Gan YY, Chen WH, Chong CT, Ok YS
    Bioresour Technol, 2022 Jan;344(Pt B):126096.
    PMID: 34626763 DOI: 10.1016/j.biortech.2021.126096
    Microalgae are the most prospective raw materials for the production of biofuels, pyrolysis is an effective method to convert biomass into bioenergy. However, biofuels derived from the pyrolysis of microalgae exhibit poor fuel properties due to high content of moisture and protein. Co-pyrolysis is a simple and efficient method to produce high-quality bio-oil from two or more materials. Tires, plastics, and bamboo waste are the optimal co-feedstocks based on the improvement of yield and quality of bio-oil. Moreover, adding catalysts, especially CaO and Cu/HZSM-5, can enhance the quality of bio-oil by increasing aromatics content and decreasing oxygenated and nitrogenous compounds. Consequently, this paper provides a critical review of the production of bio-oil from co-pyrolysis of microalgae with other biomass wastes. Meanwhile, the underlying mechanism of synergistic effects and the catalytic effect on co-pyrolysis are discussed. Finally, the economic viability and prospects of microalgae co-pyrolysis are summarized.
  12. Choo SW, Chong JL, Gaubert P, Hughes AC, O'Brien S, Chaber AL, et al.
    Sci Total Environ, 2022 Feb 14.
    PMID: 35176378 DOI: 10.1016/j.scitotenv.2022.153666
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links