Displaying publications 1 - 20 of 97 in total

Abstract:
Sort:
  1. Chowdhury SR, Mh Busra MF, Lokanathan Y, Ng MH, Law JX, Cletus UC, et al.
    Adv Exp Med Biol, 2018 10 26;1077:389-414.
    PMID: 30357700 DOI: 10.1007/978-981-13-0947-2_21
    Collagen type I is the most abundant matrix protein in the human body and is highly demanded in tissue engineering, regenerative medicine, and pharmaceutical applications. To meet the uprising demand in biomedical applications, collagen type I has been isolated from mammalians (bovine, porcine, goat and rat) and non-mammalians (fish, amphibian, and sea plant) source using various extraction techniques. Recent advancement enables fabrication of collagen scaffolds in multiple forms such as film, sponge, and hydrogel, with or without other biomaterials. The scaffolds are extensively used to develop tissue substitutes in regenerating or repairing diseased or damaged tissues. The 3D scaffolds are also used to develop in vitro model and as a vehicle for delivering drugs or active compounds.
  2. Busra MF, Chowdhury SR, bin Ismail F, bin Saim A, Idrus RB
    Adv Skin Wound Care, 2016 Mar;29(3):120-9.
    PMID: 26866868 DOI: 10.1097/01.ASW.0000480556.78111.e4
    OBJECTIVE: When given in conjunction with surgery for treating cancer, radiation therapy may result in impaired wound healing, which, in turn, could cause skin ulcers. In this study, bilayer and monolayer autologous skin substitutes were used to treat an irradiated wound.

    MATERIALS AND METHODS: A single dose of 30 Gy of linear electron beam radiation was applied to the hind limb of nude mice before creating the skin lesion (area of 78.6 mm). Monolayer tissue-engineered skin substitutes (MTESSs) were prepared by entrapping cultured keratinocytes in fibrin matrix, and bilayer tissue-engineered skin substitutes (BTESSs) were prepared by entrapping keratinocytes and fibroblasts in separate layers. Bilayer tissue-engineered skin substitute and MTESS were implanted to the wound area. Gross appearance and wound area were analyzed to evaluate wound healing efficiency. Skin regeneration and morphological appearance were observed via histological and electron microscopy. Protein expressions of transforming growth factor β1 (TGF-β1), platelet-derived growth factor BB (PDGF-BB), and vascular endothelial growth factor (VEGF) in skin regeneration were evaluated by immunohistochemistry (IHC).

    RESULTS: Macroscopic observation revealed that at day 13, treatments with BTESS completely healed the irradiated wound, whereas wound sizes of 1.1 ± 0.05 and 6.8 ± 0.14 mm were measured in the MTESS-treated and untreated control groups, respectively. Hematoxylin-eosin (H&E) analysis showed formation of compact and organized epidermal and dermal layers in the BTESS-treated group, as compared with MTESS-treated and untreated control groups. Ultrastructural analysis indicates maturation of skin in BTESS-treated wound evidenced by formation of intermediate filament bundles in the dermal layer and low intercellular space in the epidermal layer. Expressions of TGF-β1, PDGF-BB, and VEGF were also higher in BTESS-treated wounds, compared with MTESS-treated wounds.

    CONCLUSIONS: These results indicate that BTESS is the preferred treatment for irradiated wound ulcers.

  3. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al.
    Biomed Mater Eng, 2014;24(4):1715-24.
    PMID: 24948455 DOI: 10.3233/BME-140983
    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.
  4. Sulaiman SB, Chowdhury SR, Busra MFBM, Abdul Rani RB, Mohamad Yahaya NHB, Tabata Y, et al.
    Biomedicines, 2021 Jul 23;9(8).
    PMID: 34440084 DOI: 10.3390/biomedicines9080880
    The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.
  5. Abdul Ghani N', Razali RA, Chowdhury SR, Fauzi MB, Bin Saim A, Ruszymah BHI, et al.
    Biomedicines, 2022 Dec 09;10(12).
    PMID: 36551960 DOI: 10.3390/biomedicines10123203
    A key event in wound healing is re-epithelialisation, which is mainly regulated via paracrine signalling of cytokines, chemokines, and growth factors secreted by fibroblasts. Fibroblast-secreted factors can be collected from the used culture medium, known as dermal fibroblast conditioned medium (DFCM). The goal of this study was to optimise the culture condition to acquire DFCM and evaluate its effect on keratinocyte attachment, proliferation, migration, and differentiation. Confluent fibroblasts were cultured with serum-free keratinocyte-specific (DFCM-KM) and fibroblast-specific (DFCM-FM) medium at different incubation times (Days 1, 2, and 3). DFCM collected after 3 days of incubation (DFCM-KM-3 and DFCM-FM-3) contained a higher protein concentration compared to other days. Supplementation of DFCM-KM-3 enhanced keratinocyte attachment, while DFCM-FM-3 significantly increased the keratinocyte wound-healing rate, with an increment of keratinocyte area and collective cell migration, which was distinctly different from DFCM-KM-3 or control medium. Further analysis confirmed that the presence of calcium at higher concentrations in DFCM-FM facilitated the changes. The confluent dermal fibroblasts after 3 days of incubation with serum-free culture medium produced higher proteins in DFCM, resulting in enhanced in vitro re-epithelialisation. These results suggest that the delivery of DFCM could be a potential treatment strategy for wound healing.
  6. Subramaniam T, Shaiful Hadi N, Sulaiman S, Fauzi MB, Hj Idrus RB, Chowdhury SR, et al.
    Burns, 2021 Aug 20.
    PMID: 34893370 DOI: 10.1016/j.burns.2021.08.012
    Skin substitutes are designed dressings intended to promote wound closure. In previous in vitro and in vivo studies on small animal, an acellular skin patch made of collagen hydrogel with dermal fibroblast conditioned medium (Col-DFCM), a collagen sponge scaffold with freshly harvested skin cells (OTC), and a platelet-rich-plasma gel with freshly harvested skin cells (PRP) have been developed and tested for immediate treatment of full-thickness wound. However, to determine the safety and efficacy of these skin patches for clinical applications, further study in a large animal model is needed. The aim of this study is to evaluate the potential of Col-DFCM, OTC and PRP in treating full-thickness wound in an ovine model via histological analysis and immunohistochemistry staining were performed, with the untreated (NT) group serving as the control. Gross examination was conducted on day 7, 14 and 21 to determine the wound closure rate. The findings of percentage of wound size reduction showed that the wound healed fastest in the presence of Col-DFCM (91.34 ± 23.35%) followed by OTC (84.49 ± 23.13%), PRP (77.73 ± 20.9%) and NT group (73.94 ± 23.71%). Histological evaluation with Hematoxylin & Eosin (H & E) and Masson's trichrome staining was used to study the structure of the wound area. The results showed that OTC treated wound was more mature as indicated by the presence of a thinner epidermis followed by the Col-DFCM, PRP and NT group. Immunohistochemistry analysis also confirmed the integrity and maturity of the regenerated skin, with positive expression of cytokeratin 10 (CK10) and involucrin in the epidermal layer. In conclusion, Col-DFCM, OTC and PRP treatments promote healing of full-thickness wound and have the potential to be used clinically for rapid treatment of full-thickness wound.
  7. Hafez P, Chowdhury SR, Jose S, Law JX, Ruszymah BHI, Mohd Ramzisham AR, et al.
    Cardiovasc Eng Technol, 2018 09;9(3):529-538.
    PMID: 29948837 DOI: 10.1007/s13239-018-0368-8
    Developing experimental models to study ischemic heart disease is necessary for understanding of biological mechanisms to improve the therapeutic approaches for restoring cardiomyocytes function following injury. The aim of this study was to develop an in vitro hypoxic/re-oxygenation model of ischemia using primary human cardiomyocytes (HCM) and define subsequent cytotoxic effects. HCM were cultured in serum and glucose free medium in hypoxic condition with 1% O2 ranging from 30 min to 12 h. The optimal hypoxic exposure time was determined using Hypoxia Inducible Factor 1α (HIF-1α) as the hypoxic marker. Subsequently, the cells were moved to normoxic condition for 3, 6 and 9 h to replicate the re-oxygenation phase. Optimal period of hypoxic/re-oxygenation was determined based on 50% mitochondrial injury via 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay and cytotoxicity via lactate dehydrogenase (LDH) assay. It was found that the number of cells expressing HIF-1α increased with hypoxic time and 3 h was sufficient to stimulate the expression of this marker in all the cells. Upon re-oxygenation, mitochondrial activity reduced significantly whereas the cytotoxicity increased significantly with time. Six hours of re-oxygenation was optimal to induce reversible cell injury. The injury became irreversible after 9 h as indicated by > 60% LDH leakage compared to the control group cultured in normal condition. Under optimized hypoxic reoxygenation experimental conditions, mesenchymal stem cells formed nanotube with ischemic HCM and facilitated transfer of mitochondria suggesting the feasibility of using this as a model system to study molecular mechanisms of myocardial injury and rescue.
  8. Law JX, Chowdhury SR, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Dec;18(4):585-595.
    PMID: 28748415 DOI: 10.1007/s10561-017-9645-2
    Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte-macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.
  9. Hafez P, Jose S, Chowdhury SR, Ng MH, Ruszymah BH, Abdul Rahman Mohd R
    Cell Biol Int, 2016 Jan;40(1):55-64.
    PMID: 26289249 DOI: 10.1002/cbin.10536
    The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Comput Softw Big Sci, 2020;4(1):10.
    PMID: 33196702 DOI: 10.1007/s41781-020-00041-z
    We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯ .
  11. Maarof M, Law JX, Chowdhury SR, Khairoji KA, Saim AB, Idrus RB
    Cytotechnology, 2016 Oct;68(5):1873-84.
    PMID: 26768914 DOI: 10.1007/s10616-015-9940-3
    Limitations of current treatments for skin loss caused by major injuries leads to the use of skin substitutes. It is assumed that secretion of wound healing mediators by these skin substitutes plays a role in treating skin loss. In our previous study, single layer keratinocytes (SK), single layer fibroblast (SF) and bilayer (BL; containing keratinocytes and fibroblasts layers) skin substitutes were fabricated using fibrin that had shown potential to heal wounds in preclinical studies. This study aimed to quantify the secretion of wound healing mediators, and compare between single and bi-layer skin substitutes. Skin samples were digested to harvest fibroblasts and keratinocytes, and expanded to obtain sufficient cells for the construction of skin substitutes. Acellular fibrin (AF) construct was used as control. Substitutes i.e. AF, SK, SF and BL were cultured for 2 days, and culture supernatant was collected to analyze secretion of wound healing mediators via multiplex ELISA. Among 19 wound healing mediators tested, BL substitute secreted significantly higher amounts of CXCL1 and GCSF compared to SF and AF substitute but this was not significant with respect to SK substitute. The BL substitute also secreted significantly higher amounts of CXCL5 and IL-6 compared to other substitutes. In contrast, the SK substitute secreted significantly higher amounts of VCAM-1 compared to other substitutes. However, all three skin substitutes also secreted CCL2, CCL5, CCL11, GM-CSF, IL8, IL-1α, TNF-α, ICAM-1, FGF-β, TGF-β, HGF, VEGF-α and PDGF-BB factors, but no significant difference was seen. Secretion of these mediators after transplantation may play a significant role in promoting wound healing process for the treatment of skin loss.
  12. Xian LJ, Chowdhury SR, Bin Saim A, Idrus RB
    Cytotherapy, 2015 Mar;17(3):293-300.
    PMID: 25456581 DOI: 10.1016/j.jcyt.2014.10.005
    Platelet-rich plasma (PRP) has been found to contain a high concentration of growth factors that are present during the process of healing. Studies conducted found that application of PRP accelerates wound healing. In this study, we characterized the skin cell suspension harvested using the co-isolation technique and evaluated the effects of PRP (10% and 20%, v/v) on co-cultured keratinocytes and fibroblasts in terms of wound healing.
  13. Maarof M, Mh Busra MF, Lokanathan Y, Bt Hj Idrus R, Rajab NF, Chowdhury SR
    Drug Deliv Transl Res, 2019 02;9(1):144-161.
    PMID: 30547385 DOI: 10.1007/s13346-018-00612-z
    Skin substitutes are one of the main treatments for skin loss, and a skin substitute that is readily available would be the best treatment option. However, most cell-based skin substitutes require long production times, and therefore, patients endure long waiting times. The proteins secreted from the cells and tissues play vital roles in promoting wound healing. Thus, we aimed to develop an acellular three-dimensional (3D) skin patch with dermal fibroblast conditioned medium (DFCM) and collagen hydrogel for immediate treatment of skin loss. Fibroblasts from human skin samples were cultured using serum-free keratinocyte-specific media (KM1 or KM2) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively. The acellular 3D skin patch was soft, semi-solid, and translucent. Collagen mixed with DFCM-KM1 and DFCM-KM2 showed higher protein release compared to collagen plus DFCM-FM. In vitro and in vivo testing revealed that DFCM and collagen hydrogel did not induce an immune response. The implantation of the 3D skin patch with or without DFCM on the dorsum of BALB/c mice demonstrated a significantly faster healing rate compared to the no-treatment group 7 days after implantation, and all groups had complete re-epithelialization at day 17. Histological analysis confirmed the structure and integrity of the regenerated skin, with positive expression of cytokeratin 14 and type I collagen in the epidermal and dermal layer, respectively. These findings highlight the possibility of using fibroblast secretory factors together with collagen hydrogel in an acellular 3D skin patch that can be used allogeneically for immediate treatment of full-thickness skin loss.
  14. Chowdhury SR, Ng MH, Hassan NS, Aminuddin BS, Ruszymah BH
    Hum. Cell, 2012 Sep;25(3):69-77.
    PMID: 22968953
    This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
  15. Chowdhury SR, Aminuddin BS, Ruszymah BH
    Indian J Exp Biol, 2012 May;50(5):332-9.
    PMID: 22803323
    In the present study in vitro expansion of human keratinocytes by supplementing dermal fibroblasts conditioned medium (DFCM) has been reported. Effect of two different DFCM acquired by culturing fibroblasts in keratinocyte-specific medium (defined keratinocytes serum free medium, DFCM-DKSFM) and fibroblast-specific serum free medium (F12: DMEM nutrient mix, DFCM-FD) have been compared. Growth kinetics of keratinocytes in terms of efficiency of cell attachment, expansion index, apparent specific growth rate and growth potential at the end of culture was evaluated in culture supplemented with DFCM-DKSFM and DFCM-FD in comparison with control i.e. DKSFM only. Results indicated that supplementation of DFCM caused significant increase in keratinocyte attachment. Efficiency of keratinocyte attachment in culture supplemented with bFCM-DKSFM was significantly higher compared to those cultured in DFCM-FD and DKSFM. In addition, the expansion index of keratinocytes in cultures supplemented with DFCM-DKSFM and DFCM-FD were 3.7 and 2.2 times higher than that of control condition even though the apparent growth rate and proliferative potential was found significantly lower. These results suggested that supplementation of DFCM enhanced expansion of keratinocyte by increasing efficiency of cell attachment, and DFCM-DKSFM provided suitable condition for in vitro expansion of keratinocytes compared to DFCM-FD and control condition.
  16. Ullah S, Zainol I, Chowdhury SR, Fauzi MB
    Int J Biol Macromol, 2018 May;111:158-168.
    PMID: 29305219 DOI: 10.1016/j.ijbiomac.2017.12.136
    The various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds were developed and investigated the effect of various composition chitosan/fish collagen/glycerin on scaffolds morphology, mechanical strength, biostability and cytocompatibility. The scaffolds were fabricated via freeze-drying technique. The effects of various compositions consisting in 3D scaffolds were investigated via FT-IR analysis, porosity, swelling and mechanical tests, and effect on the morphology of scaffolds investigated microscopically. The biostability and cytocompatibility tests were used to explore the ability of scaffolds to use for tissue engineering application. The average pore sizes of scaffolds were in range of 100.73±27.62-116.01±52.06, porosity 71.72±3.46-91.17±2.42%, tensile modulus in dry environment 1.47±0.08-0.17±0.03MPa, tensile modulus in wet environment 0.32±0.03-0.14±0.04MPa and biodegradation rate (at day 30) 60.38±0.70-83.48±0.28%. In vitro culture of human fibroblasts and keratinocytes showed that the various composition multicomponent 3D scaffolds were good cytocompatibility however, the scaffolds contained high amount of fish collagen excellently facilitated cell proliferation and adhesion. It was found that the high amount fish collagen and glycerin scaffolds have high porosity, enough mechanical strength and biostability, and excellent cytocompatibility.
  17. Lim WL, Chowdhury SR, Ng MH, Law JX
    PMID: 33947053 DOI: 10.3390/ijerph18094764
    Tissue-engineered substitutes have shown great promise as a potential replacement for current tissue grafts to treat tendon/ligament injury. Herein, we have fabricated aligned polycaprolactone (PCL) and gelatin (GT) nanofibers and further evaluated their physicochemical properties and biocompatibility. PCL and GT were mixed at a ratio of 100:0, 70:30, 50:50, 30:70, 0:100, and electrospun to generate aligned nanofibers. The PCL/GT nanofibers were assessed to determine the diameter, alignment, water contact angle, degradation, and surface chemical analysis. The effects on cells were evaluated through Wharton's jelly-derived mesenchymal stem cell (WJ-MSC) viability, alignment and tenogenic differentiation. The PCL/GT nanofibers were aligned and had a mean fiber diameter within 200-800 nm. Increasing the GT concentration reduced the water contact angle of the nanofibers. GT nanofibers alone degraded fastest, observed only within 2 days. Chemical composition analysis confirmed the presence of PCL and GT in the nanofibers. The WJ-MSCs were aligned and remained viable after 7 days with the PCL/GT nanofibers. Additionally, the PCL/GT nanofibers supported tenogenic differentiation of WJ-MSCs. The fabricated PCL/GT nanofibers have a diameter that closely resembles the native tissue's collagen fibrils and have good biocompatibility. Thus, our study demonstrated the suitability of PCL/GT nanofibers for tendon/ligament tissue engineering applications.
  18. Nordin A, Chowdhury SR, Saim AB, Bt Hj Idrus R
    PMID: 32384749 DOI: 10.3390/ijerph17093229
    Over-induction of epithelial to mesenchymal transition (EMT) by tumor growth factor beta (TGFβ) in keratinocytes is a key feature in keloid scar. The present work seeks to investigate the effect of Kelulut honey (KH) on TGFβ-induced EMT in human primary keratinocytes. Image analysis of the real time observation of TGFβ-induced keratinocytes revealed a faster wound closure and individual migration velocity compared to the untreated control. TGFβ-induced keratinocytes also have reduced circularity and display a classic EMT protein expression. Treatment of 0.0015% (v/v) KH reverses these effects. In untreated keratinocytes, KH resulted in slower initial wound closure and individual migration velocity, which sped up later on, resulting in greater wound closure at the final time point. KH treatment also led to greater directional migration compared to the control. KH treatment caused reduced circularity in keratinocytes but displayed a partial EMT protein expression. Taken together, the findings suggest the therapeutic potential of KH in preventing keloid scar by attenuating TGFβ-induced EMT.
  19. Maarof M, Chowdhury SR, Saim A, Bt Hj Idrus R, Lokanathan Y
    Int J Mol Sci, 2020 Apr 22;21(8).
    PMID: 32331278 DOI: 10.3390/ijms21082929
    Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100-1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200-400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200-1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400-800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200-400 µg/mL DFCM-KM1 and DFCM-KM2, and 400-800 µg/mL DFCM-FM, which could be useful for treating skin injuries.
  20. Mok PL, Leow SN, Koh AE, Mohd Nizam HH, Ding SL, Luu C, et al.
    Int J Mol Sci, 2017 Feb 08;18(2).
    PMID: 28208719 DOI: 10.3390/ijms18020345
    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links