Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Choo K, Ching YC, Chuah CH, Julai S, Liou NS
    Materials (Basel), 2016 Jul 29;9(8).
    PMID: 28773763 DOI: 10.3390/ma9080644
    In this study microcrystalline cellulose (MCC) was oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. The treated cellulose slurry was mechanically homogenized to form a transparent dispersion which consisted of individual cellulose nanofibers with uniform widths of 3-4 nm. Bio-nanocomposite films were then prepared from a polyvinyl alcohol (PVA)-chitosan (CS) polymeric blend with different TEMPO-oxidized cellulose nanofiber (TOCN) contents (0, 0.5, 1.0 and 1.5 wt %) via the solution casting method. The characterizations of pure PVA/CS and PVA/CS/TOCN films were performed in terms of field emission scanning electron microscopy (FESEM), tensile tests, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The results from FESEM analysis justified that low loading levels of TOCNs were dispersed uniformly and homogeneously in the PVA-CS blend matrix. The tensile strength and thermal stability of the films were increased with the increased loading levels of TOCNs to a maximum level. The thermal study indicated a slight improvement of the thermal stability upon the reinforcement of TOCNs. As evidenced by the FTIR and XRD, PVA and CS were considered miscible and compatible owing to hydrogen bonding interaction. These analyses also revealed the good dispersion of TOCNs within the PVA/CS polymer matrix. The improved properties due to the reinforcement of TOCNs can be highly beneficial in numerous applications.
  2. Choo YM, Ma AN, Chuah CH, Khor HT, Bong SC
    Lipids, 2004 Jun;39(6):561-4.
    PMID: 15554155
    The concentration of vitamin E isomers, namely, alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocotrienol, and delta-tocotrienol in palm mesocarp at 4, 8, 12, 16, and 20 wk after anthesis (WAA) were quantified using HPLC coupled with fluorescence detection. alpha-T was detected throughout the palm fruits' maturation process, whereas unsaturated tocotrienols were found only in ripe palm fruits. These developmental results indicate that tocotrienols are synthesized between 16 and 20 WAA.
  3. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA
    Lipids, 2005 Apr;40(4):429-32.
    PMID: 16028723
    The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
  4. Chuah CH, Gani Y, Sim B, Chidambaram SK
    J R Coll Physicians Edinb, 2021 03;51(1):24-30.
    PMID: 33877130 DOI: 10.4997/JRCPE.2021.107
    BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) infection has become a major challenge to clinicians. The aim of this study is to identify the risk factors of acquiring CRE to guide more targeted screening for hospital admissions.

    METHODS: This is a retrospective case-control study (ratio 1:1) where a patient with CRE infection or colonisation was matched with a control. The control was an individual who tested negative for CRE but was a close contact of a patient testing positive and was admitted at the same time and place. Univariate and multivariate statistical analyses were done.

    RESULTS: The study included 154 patients. The majority of the CRE was Klebsiella species (83%). From univariate analysis, the significant risk factors were having a history of indwelling devices (OR: 2.791; 95% CI: 1.384-5.629), concomitant other MDRO (OR: 2.556; 95% CI: 1.144-5.707) and hospitalisation for more than three weeks (OR: 2.331; 95% CI: 1.163-4.673). Multivariate analysis showed that being unable to ambulate on admission (adjusted OR: 2.345; 95% CI: 1.170-4.699) and antibiotic exposure (adjusted OR: 3.515; 95% CI: 1.377-8.972) were independent predictors. The in-hospital mortality rate of CRE infection was high (64.5%). CRE acquisition resulted in prolonged hospitalisation (median=35 days; P<0.001).

    CONCLUSION: CRE infection results in high morbidity and mortality. On top of the common risk factors, patients with mobility restriction, prior antibiotic exposures and hospitalisation for more than three weeks should be prioritised in the screening strategy to control the spread of CRE.

  5. Chuah CH, Ong YC, Kong BH, Woo YY, Wong PS, Leong KN, et al.
    J R Coll Physicians Edinb, 2020 Jun;50(2):138-140.
    PMID: 32568283 DOI: 10.4997/JRCPE.2020.211
    Talaromycosis typically occurs as an opportunistic infection among immunocompromised individuals. Infection caused by species other than T. marneffei is uncommon. While most reported cases describe infection in the lungs, we report an extremely rare intracranial Talaromyces species infection. This 61-year-old with end-stage renal disease who was unwell for the previous two months, presented with fever and worsening confusion lasting for three days. Lumbar puncture was suggestive of meningitis. Cerebrospinal fluid (CSF) culture was later confirmed to be Penicillium chrysogenum. The patient was co-infected with Group B Streptococcus sepsis. He improved with amphotericin B and ceftriaxone and was discharged with oral itraconazole for four weeks. However, he died of unknown causes two weeks later at home. Talaromyces species infection in the central nervous system is uncommon. This case highlighted a rare but life-threatening fungal meningitis. Among the four reported cases worldwide, none of the patients survived.
  6. Chuah CH, Chow TS, Hor CP, Cheng JT, Ker HB, Lee HG, et al.
    Clin Infect Dis, 2021 Nov 19.
    PMID: 34849615 DOI: 10.1093/cid/ciab962
    BACKGROUND: Role of favipiravir in preventing disease progression in COVID-19 remains uncertain. We aimed to determine its effect in preventing disease progression from non-hypoxia to hypoxia among high risk COVID-19 patients.

    STUDY DESIGN: This was an open-label, randomized clinical trial conducted at 14 public hospitals across Malaysia from February to June 2021 among 500 symptomatic, RT-PCR confirmed COVID-19 patients, aged ≥50 years with ≥1 co-morbidity, and hospitalized within first 7 days of illness. Patients were randomized on 1:1 ratio to favipiravir plus standard care or standard care alone. Favipiravir was administered at 1800mg twice-daily on day 1 followed by 800mg twice-daily until day 5. The primary endpoint was rate of clinical progression from non-hypoxia to hypoxia. Secondary outcomes included rates of mechanical ventilation, intensive care unit (ICU) admission, and in-hospital mortality.

    RESULTS: Among 500 patients were randomized (mean age, 62.5 [SD 8.0] years; 258 women [51.6%]; and 251 [50.2%] had COVID-19 pneumonia), 487 (97.4%) patients completed the trial. Clinical progression to hypoxia occurred in 46 (18.4%) patients on favipiravir plus standard care and 37 (14.8%) on standard care alone (OR 1.30; 95%CI, 0.81-2.09; P=.28). All three pre-specified secondary end points were similar between both groups. Mechanical ventilation occurred in 6 (2.4%) vs 5 (2.0%) (OR 1.20; 95%CI, 0.36-4.23; P=.76), ICU admission in 13 (5.2%) vs 12 (4.8%) (OR 1.09; 95%CI, 0.48-2.47; P=.84), and in-hospital mortality in 5 (2.0%) vs 0 (OR 12.54; 95%CI, 0.76- 207.84; P=.08).

    CONCLUSIONS: Among COVID-19 patients at high risk of disease progression, early treatment with oral favipiravir did not prevent their disease progression from non-hypoxia to hypoxia.

  7. Chuah CH
    J Chem Ecol, 2005 Apr;31(4):819-27.
    PMID: 16124253
    The chemicals of the defense secretions of Malaysian Bulbitermes, B. singaporensis, B. germanus, B. sarawakensis, and Bulbitermes sp. B, show that B. singaporensis is distinct from the other species, which are themselves closely related; the genetic distance between B. singaporensis and B. germanus is 0.71. B. singaporensis contains tetracyclic kempane, and B. germanus and B. sarawakensis contain tricyclic trinervitene; Bulbitermes sp. B contains a mixture of kempane and trinervitene. The mono- and diterpenoid compositions are species-specific.
  8. Chuah CH, Goh SH, Tho YP
    J Chem Ecol, 1986 Mar;12(3):701-12.
    PMID: 24306909 DOI: 10.1007/BF01012103
    Soldier defense secretions of the genus Hospitalitermes (Isoptera, Termitidae, Nasutitermitinae) were chemically analyzed by GC-MS and were found to contain volatile monoterpenes and polyoxygenated diterpenes. Interspecific and intraspecific chemical variations for H. umbrinus, H. hospitalis, H. flaviventris, and H. bicolor are described. Interspecific variations in monoterpene and diterpene structures and compositions were evident. A remarkable example of large intraspecific variation from a single species was observed inH. umbrinus, indicating that colonies of this species can be separable into two chemically distinct groups. The diterpenes found in one of these groups have unusually high molecular weights.
  9. Chuah CH, Goh SH, Tho YP
    J Chem Ecol, 1989 Feb;15(2):549-63.
    PMID: 24271798 DOI: 10.1007/BF01014700
    The defense secretions of five species of MalaysianNasutitermes,N. longinasus, N. matangensis, N, havilandi, N. johoricus, andNasutitermes species 01, are compared.N. longinasus andN. species 01 provide trinervitene alcohols,N. havilandi mainly tricyclic trinervitene and tetracyclic kempane alcohols and acetates, whereasN. matangensis furnish acetyl/propionyl derivatives of trinervita-11(12),15(17)-dien-3α,9β,13α-triol (XXI and XXII). A new diterpene, assigned as trinervita-11(12),15(17)-dien-3α,13α-diol-3,13-O-diacetate (XVII), is isolated fromN. havilandi. The mono- and diterpenoid compositions, being species-specific, are useful for chemotaxonomic and phylogenetic studies.
  10. Chuah CH, Goh SH, Tho YP
    J Chem Ecol, 1990 Mar;16(3):685-92.
    PMID: 24263584 DOI: 10.1007/BF01016479
    The defense secretions of the soldiers of the Malaysian rhinotermitid,Parrhinotermes aequalis (Havilandi) andP. pygmaeus (John),Termitogeton planus (Havilandi) andSchedorhinotermes malaccensis (Holmgren) consist mainly of vinyl ketones, whereas that ofProrhinotermes flavus (Bugnion & Popoff) gives (E)-1-nitropentadecene. The chemistry of the defense secretions ofParrhinotermes andTermitogeton is documented and based on their chemical relationships;Termitogeton shows a closer affinity to the Rhinotermitinae than Heterotermitinae.
  11. Chuah CH, Goh SH, Prestwich GD, Tho YP
    J Chem Ecol, 1983 Mar;9(3):347-56.
    PMID: 24407404 DOI: 10.1007/BF00988454
    Trinervita-1(15),8(19)-dien-2β,3α-diol and the new trinervita-1(15),8(19)-dien-2β, 3α-diol 2-O-acetate constitute the major diterpene constituents of the soldier defense secretions of the NasutitermiteHospitalitermes umbrinus of Malaysian region. Studies on the intraspecific variations on sympatric and allopatric populations indicate two distinct patterns of chemical composition.
  12. Goh PS, Ng MH, Choo YM, Amru NB, Chuah CH
    Molecules, 2015;20(11):19936-46.
    PMID: 26556328 DOI: 10.3390/molecules201119666
    In the present study, tocotrienol rich fraction (TRF) nanoemulsions were produced as an alternative approach to improve solubility and absorption of tocotrienols. In the present study, droplet size obtained after 10 cycles of homogenization with increasing pressure was found to decrease from 120 to 65.1 nm. Nanoemulsions stabilized with Tween series alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) homogenized at 25,000 psi and 10 cycles, produced droplet size less than 100 nm and a narrow size distribution with a polydispersity index (PDI) value lower than 0.2. However blend of Tween series with Span 80 produced nanoemulsions with droplet size larger than 200 nm. This work has also demonstrated the amount of tocols losses in TRF nanoemulsion stabilized Tweens alone or emulsifier blend Brij 35:Span 80 (0.6:0.4 w/w) ranged between 3%-25%. This can be attributed to the interfacial film formed surrounding the droplets exhibited different level of oxidative stability against heat and free radicals created during high pressure emulsification.
  13. Goh SH, Chuah CH, Vadiveloo J, Tho YP
    J Chem Ecol, 1990 Feb;16(2):619-30.
    PMID: 24263517 DOI: 10.1007/BF01021792
    Soldiers of free-ranging termites of the genusLacessititermes (Isoptera, Nasutitermitinae) secrete from their frontal glands a mixture of monoterpenes, sesquiterpenes, and diterpenes.Lacessititermes ransoneti, L. laborator, andL. species A produce species-specific secretions, the composition being most complex forL. laborator. Apart from known mono- and dihydroxytrinervitadienes, the following new diterpenes were isolated and tentatively assigned as trinervita-1(15),8(19)-dien-2β,3α,9α,14α-tetraol 2,3,14-O-triacetate, trinervita-1(15),8(19)-dien-2β,3α,9β,14α-tetraol 2,3,14-O-triacetate, 2β,3α,9α, 14α-tetraacetoxy-1 (15), 8(19)-trinervitadiene, and 2β,3α,11α,13α-tetraacetoxy-1(15),8(19)-trinervitadiene. Data on intragenus chemical variations were subjected to canonical discriminant analysis and genetic distances among the species were calculated to depict intragenus identities and affinities.
  14. Goh SH, Chuah CH, Tho YP, Prestwich GD
    J Chem Ecol, 1984 Jun;10(6):929-44.
    PMID: 24318785 DOI: 10.1007/BF00987974
    The chemical defense secretions of major and minor soldiers of over 18 colonies of the primitive glue-squirting nasute termiteLongipeditermes longipes (Isoptera, Termitidae, Nasutitermitinae) were analyzed chormatographically. The colonies, collected from four rainforest sites in peninsular Malaysia, showed monoterpene patterns rich in pinenes and limonene but with few quantitative differences between colonies. In marked contrast, the diterpene chemistry is high variable, and includes tricyclic (trinervitane), tetracyclic (rippertane), bicyclic (secotrinervitane), and a new spirotetracyclic (longipane) skeleton. Three new natural products are included in this remarkable and unprecedented example of structural diversity among different colonies of a single species.
  15. Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH
    Int J Biol Macromol, 2024 Apr;264(Pt 2):130525.
    PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525
    To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
  16. Gouk SW, Cheng SF, Ong AS, Chuah CH
    Br J Nutr, 2014 Apr 14;111(7):1174-80.
    PMID: 24286356 DOI: 10.1017/S0007114513003668
    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.
  17. Gouk SW, Cheng SF, Mok JS, Ong AS, Chuah CH
    Br J Nutr, 2013 Dec 14;110(11):1987-95.
    PMID: 23756564 DOI: 10.1017/S0007114513001475
    The present study aimed to determine the effect of positional distribution of long-chain SFA in TAG, especially at the sn-1, 3 positions, on fat deposition using the C57BL/6 mouse model. Throughout the 15 weeks of the study, mice were fed with diets fortified with palm olein (POo), chemically interesterified POo (IPOo) and soyabean oil (SOY). Mice receiving the SOY-enriched diet gained significantly higher amounts of subcutaneous fat (P= 0·011) and total fat (P= 0·013) compared with the POo group, despite similar body mass gain being recorded. During normalisation with food consumption to obtain the fat:feed ratio, mice fed with the POo-enriched diet exhibited significantly lower visceral (P= 0·044), subcutaneous (P= 0·006) and total (P= 0·003) fat:feed than those fed with the SOY-enriched diet. It is noteworthy that mice fed with the IPOo-enriched diet gained 14·3 % more fat per food consumed when compared with the POo group (P= 0·013), despite their identical total fatty acid compositions. This was mainly attributed to the higher content of long-chain SFA at the sn-1, 3 positions of TAG in POo, which results in delayed absorption after deacylation as evidenced by the higher amounts of long-chain SFA excreted in the faeces of mice fed with the POo-enriched diet. Negative correlations were found between the subcutaneous, visceral as well as total fat accretion per food consumption and the total SFA content at the sn-1, 3 positions, while no relationships were found for MUFA and PUFA. The present results show that the positional distribution of long-chain SFA exerts a more profound effect on body fat accretion than the total SFA content.
  18. Gunathilake TMSU, Ching YC, Chuah CH, Hai ND, Nai-Shang L
    Pharm Res, 2020 Aug 30;37(9):178.
    PMID: 32864721 DOI: 10.1007/s11095-020-02910-z
    PURPOSE: Among various types of external stimuli-responsive DDS, electric-responsive DDS are more promising carriers as they exploit less complex, easily miniaturized electric signal generators and the possibility of fine-tuning the electric signals. This study investigates the use of intrinsically biocompatible biopolymers in electro-simulative drug delivery to enhance the release of poorly-soluble/non-ionic drug.

    METHODS: CMC/PLA/ZnO/CUR nanocomposite films were prepared by the dispersion of CMC and ZnO NPs in solubilized PLA/curcumin medium, followed by solvent casting step. Curcumin is poorly water-soluble and used as the model drug in this study. The films with different contents of CMC, PLA and ZnO NPs were characterized using FTIR, impedance spectroscopy, tensile testing and FESEM imaging. The in vitro drug release of the films was carried out in deionized water under DC electric field of 4.5 V.

    RESULTS: The ionic conductivity of the films increased with increasing the CMC concentration of the film. The addition of a small amount of ZnO NPs (2%) successfully restored the tensile properties of the film. In response to the application of the electric field, the composite films released drug with a near-linear profile. There was no noticeable amount of passive diffusion of the drug from the film with the absence of the electric field.

    CONCLUSION: The outcome of this study enabled the design of an electric-responsive nanocomposite platform for the delivery of poorly water-soluble/non-ionic drugs. Graphical abstract.

  19. Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
    PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215
    The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
  20. Gunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH
    Cellulose (Lond), 2022 Jan 04.
    PMID: 35002106 DOI: 10.1007/s10570-021-04391-8
    Nanocellulose/polyvinyl alcohol/curcumin (CNC/PVA/curcumin) nanoparticles with enhanced drug loading properties were developed by the dispersion of nanocellulose in curcumin/polyvinyl alcohol aqueous medium. Due to the physical and chemical nature of sulphuric acid hydrolyzed nanocellulose and the antiviral properties of curcumin, the possibility of using these nanoparticles as an inhalable nanotherapeutic for the treatment of coronavirus disease 2019 (COVID-19) is discussed. The adsorption of curcumin and PVA into nanocellulose, and the presence of anionic sulphate groups, which is important for the interaction with viral glycoproteins were confirmed by Fourier transform infrared (FTIR) spectroscopy. FESEM images showed that the diameter of nanocellulose ranged from 50 to 100 nm, which is closer to the diameter (60-140 nm) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The solubility of poorly water-soluble curcumin was increased from 40.58 ± 1.42 to 313.61 ± 1.05 mg/L with increasing the PVA concentration from 0.05 to 0.8% (w/v) in aqueous medium. This is a significant increase in the solubility compared to curcumin's solubility in carboxymethyl cellulose medium in our previous study. The drug loading capacity increased by 22-fold with the addition of 0.8% PVA to the nanocellulose dispersed curcumin solution. The highest drug release increased from 1.25 ± 0.15 mg/L to 17.11 ± 0.22 mg/L with increasing the PVA concentration from 0 to 0.8% in the drug-loaded medium. Future studies of this material will be based on the antiviral efficacy against SARS-CoV-2 and cell cytotoxicity studies. Due to the particulate nature, morphology and size of SARS-CoV-2, nanoparticle-based strategies offer a strong approach to tackling this virus. Hence, we believe that the enhanced loading of curcumin in nanocellulose will provide a promising nano-based solution for the treatment of COVID-19.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links