Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Yang J, Ching YC, Chuah CH, Liou NS
    Polymers (Basel), 2020 Dec 29;13(1).
    PMID: 33383626 DOI: 10.3390/polym13010094
    This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites' water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.
  2. Yang J, Ching YC, Chuah CH
    Polymers (Basel), 2019 Apr 28;11(5).
    PMID: 31035331 DOI: 10.3390/polym11050751
    Lignocellulosic fibers and lignin are two of the most important natural bioresources in the world. They show tremendous potential to decrease energy utilization/pollution and improve biodegradability by replacing synthetic fibers in bioplastics. The compatibility between the fiber-matrix plays an important part in the properties of the bioplastics. The improvement of lignocellulosic fiber properties by most surface treatments generally removes lignin. Due to the environmental pollution and high cost of cellulose modification, focus has been directed toward the use of lignocellulosic fibers in bioplastics. In addition, lignin-reinforced bioplastics are fabricated with varying success. These applications confirm there is no need to remove lignin from lignocellulosic fibers when preparing the bioplastics from a technical point of view. In this review, characterizations of lignocellulosic fibers and lignin related to their applications in bioplastics are covered. Then, we generalize the developments and problems of lignin-reinforced bioplastics and modification of lignin to improve the interaction of lignin-matrix. As for lignocellulosic fiber-reinforced bioplastics, we place importance on the low compatibility of the lignocellulosic fiber-matrix. The applications of lignin-containing cellulose and lignocellulosic fibers without delignification in the bioplastics are reviewed. A comparison between lignocellulosic fibers and lignin in the bioplastics is given.
  3. Yahya M, Sakti SCW, Fahmi MZ, Chuah CH, Lee HV
    Int J Biol Macromol, 2024 Feb;257(Pt 2):128696.
    PMID: 38072349 DOI: 10.1016/j.ijbiomac.2023.128696
    This study focuses on the preparation of mangosteen rind-derived nanocellulose via green ascorbic acid hydrolysis. Subsequently, milk protein-grafted nanocellulose particles were developed as a renewable Pickering emulsifier for water-oil stabilization. The stabilizing efficiency of modified nanocellulose (NC-S) at different caseinate (milk protein) concentrations (1.5, 3.0, and 4.0 % w/v) was tested in a water-in-oil emulsion (W/O ratio of 40:60). At a concentration 3.0 % w/v of caseinate (3.0NC-S), the emulsion exhibited a stronger network of adsorption between water, Pickering emulsifier, and oil. This resulted in reduced oil droplet flocculation, increased stability over a longer period, and favorable emulsifying properties, as depicted in the creaming index profile, oil droplet distribution, and rheology analysis. Since 3.0NC-S demonstrated the best colloidal stability, further focus will be placed on its microstructural properties, comparing them with those of mangosteen rind (MG), cellulose, and nanocellulose (NC-L). The XRD profile indicated that both NC-L and NC-S possessed a cellulose nanocrystal structure characterized as type I beta with a high crystallinity index above 60 %. Morphology investigation shown that the NC-L present in the spherical shape of particles with nanosized ranging at diameters of 11.27 ± 0.50 nm and length 11.76 ± 0.46 nm, while modified NC-S showed increase sized at 14.26 ± 4.60 nm and length 14.96 ± 4.94 nm. The increment of particle sizes from NC-L to NC-S indicated 2.82 × 10-15 mg/m2 of surface protein coverage by caseinate functional groups.
  4. Woon YL, Lee YL, Chong YM, Ayub NA, Krishnabahawan SL, Lau JFW, et al.
    Lancet Reg Health West Pac, 2021 Apr;9:100123.
    PMID: 33778796 DOI: 10.1016/j.lanwpc.2021.100123
    Background: Asymptomatic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections are well documented. Healthcare workers (HCW) are at increased risk of infection due to occupational exposure to infected patients. We aim to determine the prevalence of SARS-CoV-2 antibodies among HCW who did not come to medical attention.

    Methods: We prospectively recruited 400 HCW from the National Public Health Laboratory and two COVID-19 designated public hospitals in Klang Valley, Malaysia between 13/4/2020 and 12/5/2020. Quota sampling was used to ensure representativeness of HCW involved in direct and indirect patient care. All participants answered a self-administered questionnaire and blood samples were taken to test for SARS-CoV-2 antibodies by surrogate virus neutralization test.

    Findings: The study population comprised 154 (38.5%) nurses, 103 (25.8%) medical doctors, 47 (11.8%) laboratory technologists and others (23.9%). A majority (68.9%) reported exposure to SARS-CoV-2 in the past month within their respective workplaces. Adherence to personal protection equipment (PPE) guidelines and hand hygiene were good, ranging from 91-100% compliance. None (95% CI: 0, 0.0095) of the participants had SARS-CoV-2 antibodies detected, despite 182 (45.5%) reporting some symptoms one month prior to study recruitment. One hundred and fifteen (29%) of participants claimed to have had contact with known COVID-19 persons outside of their workplace.

    Interpretation: Zero seroprevalence among HCW suggests a low incidence of undiagnosed COVID-19 infection in our healthcare setting during the first local wave of SARS-CoV-2 infection. The occupational risk of SARS-CoV-2 transmission within healthcare facilities can be prevented by adherence to infection control measures and appropriate use of PPE.

  5. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
  6. Wei S, Ching YC, Chuah CH
    Carbohydr Polym, 2020 Mar 01;231:115744.
    PMID: 31888854 DOI: 10.1016/j.carbpol.2019.115744
    Chitosan with abundant functional groups is regarded as important ingredients for preparing aerogel materials in life science. The biocompatibility and biodegradability of chitosan aerogels, coupled to the variety of chemical functionalities they include, result in them promising carriers for drug delivery. Moreover, chitosan aerogels as drug delivery vehicles can offer improved drug bioavailability and drug loading capacity due to their highly porous network, considerably large specific surface area and polycationic feature. The major focus of this review lies in preparation methods of chitosan aerogels from acidic aqueous solution and chitosan solution in Ionic Liquids (ILs). In addition, chitosan aerogels as drug delivery carriers are introduced in detail and expected to inspire readers to create new kind of drug delivery system based on chitosan aerogels. Finally, growing points and perspectives of chitosan aerogels in drug delivery system are given.
  7. Udenni Gunathilake TMS, Ching YC, Ching KY, Chuah CH, Abdullah LC
    Polymers (Basel), 2017 Apr 29;9(5).
    PMID: 30970839 DOI: 10.3390/polym9050160
    Extensive employment of biomaterials in the areas of biomedical and microbiological applications is considered to be of prime importance. As expected, oil based polymer materials were gradually replaced by natural or synthetic biopolymers due to their well-known intrinsic characteristics such as biodegradability, non-toxicity and biocompatibility. Literature on this subject was found to be expanding, especially in the areas of biomedical and microbiological applications. Introduction of porosity into a biomaterial broadens the scope of applications. In addition, increased porosity can have a beneficial effect for the applications which exploit their exceptional ability of loading, retaining and releasing of fluids. Different applications require a unique set of pore characteristics in the biopolymer matrix. Various pore morphologies have different characteristics and contribute different performances to the biopolymer matrix. Fabrication methods for bio-based porous materials more related to the choice of material. By choosing the appropriate combination of fabrication technique and biomaterial employment, one can obtain tunable pore characteristic to fulfill the requirements of desired application. In our previous review, we described the literature related to biopolymers and fabrication techniques of porous materials. This paper we will focus on the biomedical and microbiological applications of bio-based porous materials.
  8. Tan JC, Chuah CH, Cheng SF
    J Sci Food Agric, 2017 Apr;97(6):1784-1789.
    PMID: 27470073 DOI: 10.1002/jsfa.7975
    BACKGROUND: Conventional palm oil milling involves multiple stages after fruit collection; in particular, oil clarification introduces water into the pressed oil, which results in a large quantity of wastewater.

    RESULTS: A combined process of microwave pretreatment and solvent extraction to mill crude palm oil, without introducing water or steam, is described. An excellent yield (up to 30%) of oil was obtained with pretreatment in a 42 L, 1000 W and 2450 MHz microwave oven followed by hexane extraction. The optimum conditions (10 min microwave pretreatment and 12 h solvent extraction) yielded an oil with a low free fatty acid content (<1.0%) and an acceptable anisidine value (<3.0 meq kg(-1) ). The oil had a fatty acid composition not resembling those of conventional crude palm oil and crude palm kernel oil. In the pretreatment, the leached oil had 6.3% lauric acid whereas the solvent extracted oil had only 1.5% lauric acid. Among the factors affecting the oil quality, microwave pretreatment affected the oil quality significantly; however, an optimised duration that would ensure high efficiency in solvent extraction also resulted in ruptured fruitlets, although not to the extent of causing excessive oxidation. In fact, microwave pretreatment should exceed 12 min; after only 15 min, the oil had 1-methylcyclopentanol (12.96%), 1-tetradecanol (9.44%), 1-nonadecene (7.22%), nonanal (7.13%) and 1-tridecene (5.09%), which probably arose from the degradation of fibres.

    CONCLUSION: Microwave pretreatment represents an alternative milling process for crude palm oil compared with conventional processes in the omission of wet treatment with steam. © 2016 Society of Chemical Industry.

  9. Tan HP, Wong DZ, Ling SK, Chuah CH, Kadir HA
    Fitoterapia, 2012 Jan;83(1):223-9.
    PMID: 22093753 DOI: 10.1016/j.fitote.2011.10.019
    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases.
  10. Siar CH, Ng KH, Ngui CH, Chuah CH
    J Laryngol Otol, 1990 Mar;104(3):252-4.
    PMID: 2341785
    Clinical, radiological and histological characteristics of the peripheral ameloblastoma are briefly outlined. A case found occurring in the palate and presenting with atypical histological features is reported. The differential diagnosis of this lesion, its treatment and histogenesis are discussed.
  11. Shi W, Ching YC, Chuah CH
    Int J Biol Macromol, 2021 Feb 15;170:751-767.
    PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214
    Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
  12. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
  13. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Liou NS
    Int J Biol Macromol, 2020 May 07;158:670-688.
    PMID: 32389655 DOI: 10.1016/j.ijbiomac.2020.05.010
    The limitations of existing drug delivery systems (DDS) such as non-specific bio-distribution and poor selectivity have led to the exploration of a variety of carrier platforms to facilitate highly desirable and efficient drug delivery. Stimuli-responsive DDS are one of the most versatile and innovative approach to steer the compounds to the intended sites by exploiting their responsiveness to a range of various triggers. Preparation of stimuli-responsive DDS using celluloses and their derivatives offer a remarkable advantage over conventional polymer materials. In this review, we highlight on state-of-art progress in developing cellulose/cellulose hybrid stimuli-responsive DDS, which covers the preparation techniques, physicochemical properties, basic principles and, mechanisms of stimuli effect on drug release from various types of cellulose based carriers, through recent innovative investigations. Attention has been paid to endogenous stimuli (pH, temperature, redox gradient and ionic-strength) responsive DDS and exogenous stimuli (light, magnetic field and electric field) responsive DDS, where the cellulose-based materials have been extensively employed. Furthermore, the current challenges and future prospects of these DDS are also discussed at the end.
  14. Puah CW, Choo YM, Ma AN, Chuah CH
    Lipids, 2006 Mar;41(3):305-8.
    PMID: 16711607
    Some unidentified minor compounds have been observed in the residue from short-path distillation of transesterified palm oil that are not detected in the original palm oil. A method combining short-path distillation to enrich the unknowns with fractionation using solid-phase extraction is described. The fractionated components were identified using GC coupled with MS. The transesterified palm oil was found to contain methyl esters of up to C32 carbon atoms. In the very long chain FAME with carbon numbers > or = 20, both even and odd carbon numbers accounted for 0.26 wt%, with C24 and C26 being the major ones present in the residue after short-path distillation of transesterified palm oil.
  15. Ng MH, Choo YM, Ma AN, Chuah CH, Hashim MA
    Lipids, 2004 Oct;39(10):1031-5.
    PMID: 15691027
    Previous reports showed that vitamin E in palm oil consists of various isomers of tocopherols and tocotrienols [alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol), and this is normally analyzed using silica column HPLC with fluorescence detection. In this study, an HPLC-fluorescence method using a C30 silica stationary phase was developed to separate and analyze the vitamin E isomers present in palm oil. In addition, an alpha-tocomonoenol (alpha-T1) isomer was quantified and characterized by MS and NMR. (alpha-T1 constitutes about 3-4% (40+/-5 ppm) of vitamin E in crude palm oil (CPO) and is found in the phytonutrient concentrate (350+/-10 ppm) from palm oil, whereas its concentration in palm fiber oil (PFO) is about 11% (430+/-6 ppm). The relative content of each individual vitamin E isomer before and after interesterification/transesterification of CPO to CPO methyl esters, followed by vacuum distillation of CPO methyl esters to yield the residue, remained the same except for alpha-T and gamma-T3. Whereas alpha-T constitutes about 36% of the total vitamin E in CPO, it is present at a level of 10% in the phytonutrient concentrate. On the other hand, the composition of gamma-T3 increases from 31% in CPO to 60% in the phytonutrient concentrate. Vitamin is present at 1160+/-43 ppm, and its concentrations in PFO and the phytonutrient concentrate are 4,040+/-41 and 13,780+/-65 ppm, respectively. The separation and quantification of alpha-T1 in palm oil will lead to more in-depth knowledge of the occurrence of vitamin E in palm oil.
  16. Mhd Haniffa MAC, Ching YC, Illias HA, Munawar K, Ibrahim S, Nguyen DH, et al.
    Carbohydr Polym, 2021 Feb 01;253:117245.
    PMID: 33279000 DOI: 10.1016/j.carbpol.2020.117245
    Cellulose with ample hydroxyl groups is considered as a promising supportive biopolymer for fabricating cellulose supported promising magnetic sorbents (CMS) for magnetic solid-phase extraction (MSPE). The easy recovery via external magnetic field, and recyclability of CMS, associated with different types and surface modifications of cellulose has made them a promising sorbent in the field of solid-phase extraction. CMS based sorbent can offer improved adsorption and absorption capabilities due to its high specific surface area, porous structure, and magnetic attraction feature. This review mainly focuses on the fabrication strategies of CMS using magnetic nanoparticles (MNPs) and various forms of cellulose as a heterogeneous and homogeneous solution either in alkaline mediated urea or Ionic liquids (ILs). Moreover, CMS will be elaborated based on their structures, synthesis, physical performance, and chemical attraction of MNPs and their MSPE in details. The advantages, challenges, and prospects of CMS in future applications are also presented.
  17. Mhd Haniffa MAC, Ching YC, Abdullah LC, Poh SC, Chuah CH
    Polymers (Basel), 2016 Jun 29;8(7).
    PMID: 30974522 DOI: 10.3390/polym8070246
    The properties of a composite material depend on its constituent materials such as natural biopolymers or synthetic biodegradable polymers and inorganic or organic nanomaterials or nano-scale minerals. The significance of bio-based and synthetic polymers and their drawbacks on coating film application is currently being discussed in research papers and articles. Properties and applications vary for each novel synthetic bio-based material, and a number of such materials have been fabricated in recent years. This review provides an in-depth discussion on the properties and applications of biopolymer-based nanocomposite coating films. Recent works and articles are cited in this paper. These citations are ubiquitous in the development of novel bionanocomposites and their applications.
  18. Mhd Haniffa MAC, Munawar K, Ching YC, Illias HA, Chuah CH
    Chem Asian J, 2021 Jun 01;16(11):1281-1297.
    PMID: 33871151 DOI: 10.1002/asia.202100226
    New and emerging demand for polyurethane (PU) continues to rise over the years. The harmful isocyanate binding agents and their integrated PU products are at the height of environmental concerns, in particular PU (macro and micro) pollution and their degradation problems. Non-isocyanate poly(hydroxy urethane)s (NIPUs) are sustainable and green alternatives to conventional PUs. Since the introduction of NIPU in 1957, the market value of NIPU and its hybridized materials has increased exponentially in 2019 and is expected to continue to rise in the coming years. The secondary hydroxyl groups of these NIPU's urethane moiety have revolutionized them by allowing for adequate pre/post functionalization. This minireview highlights different strategies and advances in pre/post-functionalization used in biobased NIPU. We have performed a comprehensive evaluation of the development of new ideas in this field to achieve more efficient synthetic biobased hybridized NIPU processes through selective and kinetic understanding.
  19. Mhd Haniffa MAC, Ching YC, Chuah CH, Yong Ching K, Nazri N, Abdullah LC, et al.
    Carbohydr Polym, 2017 Oct 01;173:91-99.
    PMID: 28732923 DOI: 10.1016/j.carbpol.2017.05.084
    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2Ihelical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose.
  20. Lau HL, Puah CW, Choo YM, Ma AN, Chuah CH
    Lipids, 2005 May;40(5):523-8.
    PMID: 16094863
    This paper discusses a rapid GC-FID technique for the simultaneous quantitative analysis of FFA, MAG, DAG, TAG, sterols, and squalene in vegetable oils, with special reference to palm oil. The FFA content determined had a lower SE compared with a conventional titrimetric method. Squalene and individual sterols, consisting of beta-sitosterol, stigmasterol, campesterol, and cholesterol, were accurately quantified without any losses. This was achieved through elimination of tedious conventional sample pretreatments, such as saponification and preparative TLC. With this technique, the separation of individual MAG, consisting of 16:0, 18:0, and 18:1 FA, and the DAG species, consisting of the 1,2(2,3)- and 1,3-positions, was sufficient to enable their quantification. This technique enabled the TAG to be determined according to their carbon numbers in the range of C44 to C56. Comparisons were made with conventional methods, and the results were in good agreement with those reported in the literature.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links