Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Haniffa MACM, Illias HA, Chee CY, Ibrahim S, Sandu V, Chuah CH
    ACS Omega, 2020 May 12;5(18):10315-10326.
    PMID: 32426588 DOI: 10.1021/acsomega.9b04388
    Hybrid bionanocomposite coating systems (HBCSs) are green polymer materials consisting of an interface between a coating matrix and nanoparticles. The coating matrix was prepared by using a nonisocyanate poly(hydroxyl urethane) (NIPHU) prepolymer crosslinked via 1,3-diaminopropane and epoxidized Jatropha curcas oil. TEMPO-oxidized cellulose nanoparticles (TARC) were prepared from microcrystalline cellulose, and (3-aminopropyl)trimethoxysilane (APTMS)-coated ZnO nanoparticles (APTMS-ZnO) and their suspensions were synthesized separately. The suspensions at different weight ratios were incorporated into the coating matrix to prepare a series of HBCSs. FT-IR, 1H-NMR, 13C-NMR, XRD, SEM, and TEM were used to confirm the chemical structures, morphology, and elements of the coating matrix, nanomaterials, and HBCSs. The thermomechanical properties of the HBCSs were investigated by TGA-DTG and pencil hardness analyses. The UV and IR absorption spectra of the HBCSs were obtained using UV-vis spectroscopy and FTIR spectroscopy, respectively. The HBCSs exhibited good thermal stability at about 200 °C. The degradation temperature at 5% mass loss of all samples was over around 280 °C. The HBCSs exhibited excellent UV block and IR active properties with a stoichiometric ratio of the NIPHU prepolymer and EJCO of 1:1 (wt/wt) containing 5 wt % TARC and 15 wt % APTMS-ZnO nanoparticles. It was observed that the sample with 5 wt % TARC and 15 wt % APTMS-ZnO (HBCS-2) exhibited a uniform crosslinking and reinforcement network with a T onset of 282 °C. This sample has successfully achieved good coating hardness and excellent UV and IR absorption.
  2. Mhd Haniffa MAC, Ching YC, Illias HA, Munawar K, Ibrahim S, Nguyen DH, et al.
    Carbohydr Polym, 2021 Feb 01;253:117245.
    PMID: 33279000 DOI: 10.1016/j.carbpol.2020.117245
    Cellulose with ample hydroxyl groups is considered as a promising supportive biopolymer for fabricating cellulose supported promising magnetic sorbents (CMS) for magnetic solid-phase extraction (MSPE). The easy recovery via external magnetic field, and recyclability of CMS, associated with different types and surface modifications of cellulose has made them a promising sorbent in the field of solid-phase extraction. CMS based sorbent can offer improved adsorption and absorption capabilities due to its high specific surface area, porous structure, and magnetic attraction feature. This review mainly focuses on the fabrication strategies of CMS using magnetic nanoparticles (MNPs) and various forms of cellulose as a heterogeneous and homogeneous solution either in alkaline mediated urea or Ionic liquids (ILs). Moreover, CMS will be elaborated based on their structures, synthesis, physical performance, and chemical attraction of MNPs and their MSPE in details. The advantages, challenges, and prospects of CMS in future applications are also presented.
  3. Mhd Haniffa MAC, Ching YC, Chuah CH, Yong Ching K, Nazri N, Abdullah LC, et al.
    Carbohydr Polym, 2017 Oct 01;173:91-99.
    PMID: 28732923 DOI: 10.1016/j.carbpol.2017.05.084
    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2Ihelical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose.
  4. Wei S, Ching YC, Chuah CH
    Carbohydr Polym, 2020 Mar 01;231:115744.
    PMID: 31888854 DOI: 10.1016/j.carbpol.2019.115744
    Chitosan with abundant functional groups is regarded as important ingredients for preparing aerogel materials in life science. The biocompatibility and biodegradability of chitosan aerogels, coupled to the variety of chemical functionalities they include, result in them promising carriers for drug delivery. Moreover, chitosan aerogels as drug delivery vehicles can offer improved drug bioavailability and drug loading capacity due to their highly porous network, considerably large specific surface area and polycationic feature. The major focus of this review lies in preparation methods of chitosan aerogels from acidic aqueous solution and chitosan solution in Ionic Liquids (ILs). In addition, chitosan aerogels as drug delivery carriers are introduced in detail and expected to inspire readers to create new kind of drug delivery system based on chitosan aerogels. Finally, growing points and perspectives of chitosan aerogels in drug delivery system are given.
  5. Gunathilake TMSU, Ching YC, Uyama H, Hai ND, Chuah CH
    Cellulose (Lond), 2022 Jan 04.
    PMID: 35002106 DOI: 10.1007/s10570-021-04391-8
    Nanocellulose/polyvinyl alcohol/curcumin (CNC/PVA/curcumin) nanoparticles with enhanced drug loading properties were developed by the dispersion of nanocellulose in curcumin/polyvinyl alcohol aqueous medium. Due to the physical and chemical nature of sulphuric acid hydrolyzed nanocellulose and the antiviral properties of curcumin, the possibility of using these nanoparticles as an inhalable nanotherapeutic for the treatment of coronavirus disease 2019 (COVID-19) is discussed. The adsorption of curcumin and PVA into nanocellulose, and the presence of anionic sulphate groups, which is important for the interaction with viral glycoproteins were confirmed by Fourier transform infrared (FTIR) spectroscopy. FESEM images showed that the diameter of nanocellulose ranged from 50 to 100 nm, which is closer to the diameter (60-140 nm) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The solubility of poorly water-soluble curcumin was increased from 40.58 ± 1.42 to 313.61 ± 1.05 mg/L with increasing the PVA concentration from 0.05 to 0.8% (w/v) in aqueous medium. This is a significant increase in the solubility compared to curcumin's solubility in carboxymethyl cellulose medium in our previous study. The drug loading capacity increased by 22-fold with the addition of 0.8% PVA to the nanocellulose dispersed curcumin solution. The highest drug release increased from 1.25 ± 0.15 mg/L to 17.11 ± 0.22 mg/L with increasing the PVA concentration from 0 to 0.8% in the drug-loaded medium. Future studies of this material will be based on the antiviral efficacy against SARS-CoV-2 and cell cytotoxicity studies. Due to the particulate nature, morphology and size of SARS-CoV-2, nanoparticle-based strategies offer a strong approach to tackling this virus. Hence, we believe that the enhanced loading of curcumin in nanocellulose will provide a promising nano-based solution for the treatment of COVID-19.
  6. Mhd Haniffa MAC, Munawar K, Ching YC, Illias HA, Chuah CH
    Chem Asian J, 2021 Jun 01;16(11):1281-1297.
    PMID: 33871151 DOI: 10.1002/asia.202100226
    New and emerging demand for polyurethane (PU) continues to rise over the years. The harmful isocyanate binding agents and their integrated PU products are at the height of environmental concerns, in particular PU (macro and micro) pollution and their degradation problems. Non-isocyanate poly(hydroxy urethane)s (NIPUs) are sustainable and green alternatives to conventional PUs. Since the introduction of NIPU in 1957, the market value of NIPU and its hybridized materials has increased exponentially in 2019 and is expected to continue to rise in the coming years. The secondary hydroxyl groups of these NIPU's urethane moiety have revolutionized them by allowing for adequate pre/post functionalization. This minireview highlights different strategies and advances in pre/post-functionalization used in biobased NIPU. We have performed a comprehensive evaluation of the development of new ideas in this field to achieve more efficient synthetic biobased hybridized NIPU processes through selective and kinetic understanding.
  7. Chuah CH, Chow TS, Hor CP, Cheng JT, Ker HB, Lee HG, et al.
    Clin Infect Dis, 2021 Nov 19.
    PMID: 34849615 DOI: 10.1093/cid/ciab962
    BACKGROUND: Role of favipiravir in preventing disease progression in COVID-19 remains uncertain. We aimed to determine its effect in preventing disease progression from non-hypoxia to hypoxia among high risk COVID-19 patients.

    STUDY DESIGN: This was an open-label, randomized clinical trial conducted at 14 public hospitals across Malaysia from February to June 2021 among 500 symptomatic, RT-PCR confirmed COVID-19 patients, aged ≥50 years with ≥1 co-morbidity, and hospitalized within first 7 days of illness. Patients were randomized on 1:1 ratio to favipiravir plus standard care or standard care alone. Favipiravir was administered at 1800mg twice-daily on day 1 followed by 800mg twice-daily until day 5. The primary endpoint was rate of clinical progression from non-hypoxia to hypoxia. Secondary outcomes included rates of mechanical ventilation, intensive care unit (ICU) admission, and in-hospital mortality.

    RESULTS: Among 500 patients were randomized (mean age, 62.5 [SD 8.0] years; 258 women [51.6%]; and 251 [50.2%] had COVID-19 pneumonia), 487 (97.4%) patients completed the trial. Clinical progression to hypoxia occurred in 46 (18.4%) patients on favipiravir plus standard care and 37 (14.8%) on standard care alone (OR 1.30; 95%CI, 0.81-2.09; P=.28). All three pre-specified secondary end points were similar between both groups. Mechanical ventilation occurred in 6 (2.4%) vs 5 (2.0%) (OR 1.20; 95%CI, 0.36-4.23; P=.76), ICU admission in 13 (5.2%) vs 12 (4.8%) (OR 1.09; 95%CI, 0.48-2.47; P=.84), and in-hospital mortality in 5 (2.0%) vs 0 (OR 12.54; 95%CI, 0.76- 207.84; P=.08).

    CONCLUSIONS: Among COVID-19 patients at high risk of disease progression, early treatment with oral favipiravir did not prevent their disease progression from non-hypoxia to hypoxia.

  8. Wong SP, Lim WH, Cheng SF, Chuah CH
    Colloids Surf B Biointerfaces, 2012 Jan 1;89:48-52.
    PMID: 21937202 DOI: 10.1016/j.colsurfb.2011.08.021
    Quaternary ammonium compounds (QACs) are commonly used as disinfectant in medical care, food industry, detergents and glue industries. This is due to a small concentration of QACs is sufficient to inhibit the growth of various bacteria strains. In this work, the inhibitive power of cationic surfactants, alkyltrimethylammonium bromide (C(n)TAB) in the presence of anionic surfactants, sodium alkyl methyl ester α-sulfonate (C(n)MES) was studied. The growth inhibition test with gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria were used to determine the toxicity of single and mixed surfactants. Results from this work showed that certain mixed surfactants have lower minimum inhibition concentration (MIC) as compared to the single C(n)TAB surfactants. Besides that, it was also found that alkyl chain length and the mixing ratios of the surfactants play a significant role in determining the mixture inhibitive power.
  9. Tan HP, Wong DZ, Ling SK, Chuah CH, Kadir HA
    Fitoterapia, 2012 Jan;83(1):223-9.
    PMID: 22093753 DOI: 10.1016/j.fitote.2011.10.019
    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases.
  10. Kok WM, Chuah CH, Cheng SF
    Food Sci Biotechnol, 2018 Apr;27(2):353-366.
    PMID: 30263758 DOI: 10.1007/s10068-017-0271-3
    A long chain saturated fatty acid (SFA), behenic acid, is incorporated into the sn-1, 3 positions of triacylglycerols in palm olein (POo) and high-oleic sunflower oil (HOS) by solvent-free interesterification catalyzed by Lipozyme RM IM. The enzymatic interesterified HOS (EIE-HOS) yielded 76.5% of BOO and BOB as compared to 45.6% in POo (EIE-POo). The sn-2 position of EIE-HOS displayed 5.3 mol% of SFA which is significantly lower compared to 13.5 mol% in EIE-POo (P 
  11. Shi W, Ching YC, Chuah CH
    Int J Biol Macromol, 2021 Feb 15;170:751-767.
    PMID: 33412201 DOI: 10.1016/j.ijbiomac.2020.12.214
    Spherical aerogels are not easily broken during use and are easier to transport and store which can be used as templates for drug delivery. This review summarizes the possible approaches for the preparation of aerogel beads and microspheres based on chitosan and cellulose, an overview to the methods of manufacturing droplets is presented, afterwards, the transition mechanisms from sol to a spherical gel are reviewed in detail followed by different drying processes to obtain spherical aerogels with porous structures. Additionally, a specific focus is given to aerogel beads and microspheres to be regarded as drug delivery carriers. Furthermore, a core/shell architecture of aerogel beads and microspheres for controlled drug release is described and subjected to inspire readers to create novel drug release system. Finally, the conclusions and outlooks of aerogel beads and microspheres for drug delivery are summarized.
  12. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Illias HA, Ching KY, Singh R, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1055-1064.
    PMID: 30001596 DOI: 10.1016/j.ijbiomac.2018.06.147
    Nanocellulose reinforced chitosan hydrogel was synthesized using chemical crosslinking method for the delivery of curcumin which is a poorly water-soluble drug. Curcumin extracted from the dried rhizomes of Curcuma longa was incorporated to the hydrogel via in situ loading method. A nonionic surfactant (Tween 20) was incorporated into the hydrogel to improve the solubility of curcumin. After the gas foaming process, hydrogel showed large interconnected pore structures. The release studies in gastric medium showed that the cumulative release of curcumin increased from 0.21% ± 0.02% to 54.85% ± 0.77% with the increasing of Tween 20 concentration from 0% to 30% (w/v) after 7.5 h. However, the entrapment efficiency percentage decreased with the addition of Tween 20. The gas foamed hydrogel showed higher initial burst release within the first 120 min compared to hydrogel formed at atmospheric condition. The solubility of curcumin would increase to 3.014 ± 0.041 mg/mL when the Tween 20 concentration increased to 3.2% (w/v) in simulated gastric medium. UV-visible spectra revealed that the drug retained its chemical activity after in vitro release. From these findings, it is believed that the nonionic surfactant incorporated chitosan/nanocellulose hydrogel can provide a platform to overcome current problems associated with curcumin delivery.
  13. Gunathilake TMSU, Ching YC, Uyama H, Nguyen DH, Chuah CH
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1522-1531.
    PMID: 34740692 DOI: 10.1016/j.ijbiomac.2021.10.215
    The investigation of protein-nanoparticle interactions contributes to the understanding of nanoparticle bio-reactivity and creates a database of nanoparticles for use in nanomedicine, nanodiagnosis, and nanotherapy. In this study, hen's egg white was used as the protein source to study the interaction of proteins with sulphuric acid hydrolysed nanocellulose (CNC). Several techniques such as FTIR, zeta potential measurement, UV-vis spectroscopy, compressive strength, TGA, contact angle and FESEM provide valuable information in the protein-CNC interaction study. The presence of a broader peak in the 1600-1050 cm-1 range of CNC/egg white protein FTIR spectrum compared to the 1600-1050 cm-1 range of CNC sample indicated the binding of egg white protein to CNC surface. The contact angle with the glass surface decreased with the addition of CNC to egg white protein. The FESEM EDX spectra showed a higher amount of N and Na on the surface of CNC. It indicates the density of protein molecules higher around CNC. The zeta potential of CNC changed from -26.7 ± 0.46 to -21.7 ± 0.2 with the introduction of egg white protein due to the hydrogen bonding, polar bonds and electrostatic interaction between surface CNC and protein. The compressive strength of the egg white protein films increased from 0.064 ± 0.01 to 0.36 ± 0.02 MPa with increasing the CNC concentration from 0 to 4.73% (w/v). The thermal decomposition temperature of CNC/egg white protein decreased compared to egg white protein thermal decomposition temperature. According to UV-Vis spectroscopy, the far-UV light (207-222nm) absorption peak slightly changed in the CNC/egg white protein spectrum compared to the egg white protein spectrum. Based on the results, the observations of protein nanoparticle interactions provide an additional understanding, besides the theoretical simulations from previous studies. Also, the results indicate to aim CNC for the application of nanomedicine and nanotherapy. A new insight given by us in this research assumes a reasonable solution to these crucial applications.
  14. Yahya M, Sakti SCW, Fahmi MZ, Chuah CH, Lee HV
    Int J Biol Macromol, 2024 Feb;257(Pt 2):128696.
    PMID: 38072349 DOI: 10.1016/j.ijbiomac.2023.128696
    This study focuses on the preparation of mangosteen rind-derived nanocellulose via green ascorbic acid hydrolysis. Subsequently, milk protein-grafted nanocellulose particles were developed as a renewable Pickering emulsifier for water-oil stabilization. The stabilizing efficiency of modified nanocellulose (NC-S) at different caseinate (milk protein) concentrations (1.5, 3.0, and 4.0 % w/v) was tested in a water-in-oil emulsion (W/O ratio of 40:60). At a concentration 3.0 % w/v of caseinate (3.0NC-S), the emulsion exhibited a stronger network of adsorption between water, Pickering emulsifier, and oil. This resulted in reduced oil droplet flocculation, increased stability over a longer period, and favorable emulsifying properties, as depicted in the creaming index profile, oil droplet distribution, and rheology analysis. Since 3.0NC-S demonstrated the best colloidal stability, further focus will be placed on its microstructural properties, comparing them with those of mangosteen rind (MG), cellulose, and nanocellulose (NC-L). The XRD profile indicated that both NC-L and NC-S possessed a cellulose nanocrystal structure characterized as type I beta with a high crystallinity index above 60 %. Morphology investigation shown that the NC-L present in the spherical shape of particles with nanosized ranging at diameters of 11.27 ± 0.50 nm and length 11.76 ± 0.46 nm, while modified NC-S showed increase sized at 14.26 ± 4.60 nm and length 14.96 ± 4.94 nm. The increment of particle sizes from NC-L to NC-S indicated 2.82 × 10-15 mg/m2 of surface protein coverage by caseinate functional groups.
  15. Sampath Udeni Gunathilake TM, Ching YC, Chuah CH, Rahman NA, Liou NS
    Int J Biol Macromol, 2020 May 07;158:670-688.
    PMID: 32389655 DOI: 10.1016/j.ijbiomac.2020.05.010
    The limitations of existing drug delivery systems (DDS) such as non-specific bio-distribution and poor selectivity have led to the exploration of a variety of carrier platforms to facilitate highly desirable and efficient drug delivery. Stimuli-responsive DDS are one of the most versatile and innovative approach to steer the compounds to the intended sites by exploiting their responsiveness to a range of various triggers. Preparation of stimuli-responsive DDS using celluloses and their derivatives offer a remarkable advantage over conventional polymer materials. In this review, we highlight on state-of-art progress in developing cellulose/cellulose hybrid stimuli-responsive DDS, which covers the preparation techniques, physicochemical properties, basic principles and, mechanisms of stimuli effect on drug release from various types of cellulose based carriers, through recent innovative investigations. Attention has been paid to endogenous stimuli (pH, temperature, redox gradient and ionic-strength) responsive DDS and exogenous stimuli (light, magnetic field and electric field) responsive DDS, where the cellulose-based materials have been extensively employed. Furthermore, the current challenges and future prospects of these DDS are also discussed at the end.
  16. Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH
    Int J Biol Macromol, 2024 Apr;264(Pt 2):130525.
    PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525
    To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
  17. Chuah CH
    J Chem Ecol, 2005 Apr;31(4):819-27.
    PMID: 16124253
    The chemicals of the defense secretions of Malaysian Bulbitermes, B. singaporensis, B. germanus, B. sarawakensis, and Bulbitermes sp. B, show that B. singaporensis is distinct from the other species, which are themselves closely related; the genetic distance between B. singaporensis and B. germanus is 0.71. B. singaporensis contains tetracyclic kempane, and B. germanus and B. sarawakensis contain tricyclic trinervitene; Bulbitermes sp. B contains a mixture of kempane and trinervitene. The mono- and diterpenoid compositions are species-specific.
  18. Chuah CH, Goh SH, Tho YP
    J Chem Ecol, 1986 Mar;12(3):701-12.
    PMID: 24306909 DOI: 10.1007/BF01012103
    Soldier defense secretions of the genus Hospitalitermes (Isoptera, Termitidae, Nasutitermitinae) were chemically analyzed by GC-MS and were found to contain volatile monoterpenes and polyoxygenated diterpenes. Interspecific and intraspecific chemical variations for H. umbrinus, H. hospitalis, H. flaviventris, and H. bicolor are described. Interspecific variations in monoterpene and diterpene structures and compositions were evident. A remarkable example of large intraspecific variation from a single species was observed inH. umbrinus, indicating that colonies of this species can be separable into two chemically distinct groups. The diterpenes found in one of these groups have unusually high molecular weights.
  19. Goh SH, Chuah CH, Vadiveloo J, Tho YP
    J Chem Ecol, 1990 Feb;16(2):619-30.
    PMID: 24263517 DOI: 10.1007/BF01021792
    Soldiers of free-ranging termites of the genusLacessititermes (Isoptera, Nasutitermitinae) secrete from their frontal glands a mixture of monoterpenes, sesquiterpenes, and diterpenes.Lacessititermes ransoneti, L. laborator, andL. species A produce species-specific secretions, the composition being most complex forL. laborator. Apart from known mono- and dihydroxytrinervitadienes, the following new diterpenes were isolated and tentatively assigned as trinervita-1(15),8(19)-dien-2β,3α,9α,14α-tetraol 2,3,14-O-triacetate, trinervita-1(15),8(19)-dien-2β,3α,9β,14α-tetraol 2,3,14-O-triacetate, 2β,3α,9α, 14α-tetraacetoxy-1 (15), 8(19)-trinervitadiene, and 2β,3α,11α,13α-tetraacetoxy-1(15),8(19)-trinervitadiene. Data on intragenus chemical variations were subjected to canonical discriminant analysis and genetic distances among the species were calculated to depict intragenus identities and affinities.
  20. Chuah CH, Goh SH, Tho YP
    J Chem Ecol, 1989 Feb;15(2):549-63.
    PMID: 24271798 DOI: 10.1007/BF01014700
    The defense secretions of five species of MalaysianNasutitermes,N. longinasus, N. matangensis, N, havilandi, N. johoricus, andNasutitermes species 01, are compared.N. longinasus andN. species 01 provide trinervitene alcohols,N. havilandi mainly tricyclic trinervitene and tetracyclic kempane alcohols and acetates, whereasN. matangensis furnish acetyl/propionyl derivatives of trinervita-11(12),15(17)-dien-3α,9β,13α-triol (XXI and XXII). A new diterpene, assigned as trinervita-11(12),15(17)-dien-3α,13α-diol-3,13-O-diacetate (XVII), is isolated fromN. havilandi. The mono- and diterpenoid compositions, being species-specific, are useful for chemotaxonomic and phylogenetic studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links