Displaying all 5 publications

Abstract:
Sort:
  1. Swamy BPM, Shamsudin NAA, Rahman SNA, Mauleon R, Ratnam W, Sta Cruz MT, et al.
    Rice (N Y), 2017 Dec;10(1):21.
    PMID: 28523639 DOI: 10.1186/s12284-017-0161-6
    BACKGROUND: The identification and introgression of major-effect QTLs for grain yield under drought are some of the best and well-proven approaches for improving the drought tolerance of rice varieties. In the present study, we characterized Malaysian rice germplasm for yield and yield-related traits and identified significant trait marker associations by structured association mapping.

    RESULTS: The drought screening was successful in screening germplasm with a yield reduction of up to 60% and heritability for grain yield under drought was up to 78%. There was a wider phenotypic and molecular diversity within the panel, indicating the suitability of the population for quantitative trait loci (QTL) mapping. Structure analyses clearly grouped the accessions into three subgroups with admixtures. Linkage disequilibrium (LD) analysis revealed that LD decreased with an increase in distance between marker pairs and the LD decay varied from 5-20 cM. The Mixed Linear model-based structured association mapping identified 80 marker trait associations (MTA) for grain yield (GY), plant height (PH) and days to flowering (DTF). Seven MTA were identified for GY under drought stress, four of these MTA were consistently identified in at least two of the three analyses. Most of these MTA identified were on chromosomes 2, 5, 10, 11 and 12, and their phenotypic variance (PV) varied from 5% to 19%. The in silico analysis of drought QTL regions revealed the association of several drought-responsive genes conferring drought tolerance. The major-effect QTLs are useful in marker-assisted QTL pyramiding to improve drought tolerance.

    CONCLUSION: The results have clearly shown that structured association mapping is one of the feasible options to identify major-effect QTLs for drought tolerance-related traits in rice.

  2. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  3. Shamsudin NA, Swamy BP, Ratnam W, Sta Cruz MT, Raman A, Kumar A
    BMC Genet, 2016;17:30.
    PMID: 26818269 DOI: 10.1186/s12863-016-0334-0
    Three drought yield QTLs, qDTY 2.2, qDTY 3.1, and qDTY 12.1 with consistent effect on grain yield under reproductive stage drought stress were pyramided through marker assisted breeding with the objective of improving the grain yield of the elite Malaysian rice cultivar MR219 under reproductive stage drought stress. Foreground selection using QTL specific markers, recombinant selection using flanking markers, and background selection were performed. BC1F3-derived lines with different combinations of qDTY 2.2 , qDTY 3.1, and qDTY 12.1 were evaluated under both reproductive stage drought stress and non-stress during the dry seasons of 2013 and 2014 at IRRI.
  4. Shamsudin NAA, Swamy BPM, Ratnam W, Sta Cruz MT, Sandhu N, Raman AK, et al.
    Rice (N Y), 2016 Dec;9(1):21.
    PMID: 27164982 DOI: 10.1186/s12284-016-0093-6
    BACKGROUND: With the objective of improving the grain yield (GY) of the Malaysian high quality rice cultivar MRQ74 under reproductive stage drought stress (RS), three drought yield QTLs, viz. qDTY 2.2, qDTY 3.1 , and qDTY 12.1 were pyramided by marker assisted breeding (MAB). Foreground selection using QTL specific markers, recombinant selection using flanking markers, and background selections were performed in every generation. BC1F3 derived pyramided lines (PLs) with different combinations of qDTY 2.2, qDTY 3.1 , and qDTY 12.1 were evaluated under both RS and non-stress (NS) during the dry season (DS) of 2013 and 2014 at IRRI.

    RESULTS: The GY reductions in RS trials compared to NS trials ranged from 79 to 99 %. Plant height (PH) was reduced and days to flowering (DTF) was delayed under RS. Eleven BC1F5 MRQ74 PLs with yield advantages of 1009 to 3473 kg ha(-1) under RS and with yields equivalent to MRQ74 under NS trials were identified as promising drought tolerance PLs. Five best PLs, IR 98010-126-708-1-4, IR 98010-126-708-1-3, IR 98010-126-708-1-5, IR 99616-44-94-1-1, and IR 99616-44-94-1-2 with a yield advantage of more than 1000 kg ha(-1) under RS and with yield potential equivalent to that of MRQ74 under NS were selected. The effect of three drought grain yield QTLs under RS in MRQ74 was validated. Under NS, PLs with two qDTY combinations (qDTY 2.2 + qDTY 12.1 ) performed better than PLs with other qDTY combinations, indicating the presence of a positive interaction between qDTY 2.2 and qDTY 12.1 in the MRQ74 background.

    CONCLUSION: Drought tolerant MRQ74 PLs with a yield advantage of more than 1000 kg ha(-1) under RS were developed. Differential yield advantages of different combinations of the qDTYs indicate a differential synergistic relationship among qDTYs.

  5. Lung SC, Thi Hien T, Cambaliza MOL, Hlaing OMT, Oanh NTK, Latif MT, et al.
    PMID: 35162543 DOI: 10.3390/ijerph19031522
    The low-cost and easy-to-use nature of rapidly developed PM2.5 sensors provide an opportunity to bring breakthroughs in PM2.5 research to resource-limited countries in Southeast Asia (SEA). This review provides an evaluation of the currently available literature and identifies research priorities in applying low-cost sensors (LCS) in PM2.5 environmental and health research in SEA. The research priority is an outcome of a series of participatory workshops under the umbrella of the International Global Atmospheric Chemistry Project-Monsoon Asia and Oceania Networking Group (IGAC-MANGO). A literature review and research prioritization are conducted with a transdisciplinary perspective of providing useful scientific evidence in assisting authorities in formulating targeted strategies to reduce severe PM2.5 pollution and health risks in this region. The PM2.5 research gaps that could be filled by LCS application are identified in five categories: source evaluation, especially for the distinctive sources in the SEA countries; hot spot investigation; peak exposure assessment; exposure-health evaluation on acute health impacts; and short-term standards. The affordability of LCS, methodology transferability, international collaboration, and stakeholder engagement are keys to success in such transdisciplinary PM2.5 research. Unique contributions to the international science community and challenges with LCS application in PM2.5 research in SEA are also discussed.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links