Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Qasim SSB, Nogueira LP, Fawzy AS, Daood U
    AAPS PharmSciTech, 2020 Sep 01;21(7):250.
    PMID: 32875436 DOI: 10.1208/s12249-020-01778-x
    The correct spelling of the second author's name is Liebert Parreiras Nogueira.
  2. Qasim SSB, Nogueria LP, Fawzy AS, Daood U
    AAPS PharmSciTech, 2020 Jun 16;21(5):173.
    PMID: 32548717 DOI: 10.1208/s12249-020-01708-x
    Innovative strategies for periodontal regeneration have been the focus of research clusters across the globe for decades. In order to overcome the drawbacks of currently available options, investigators have suggested a novel concept of functionally graded membrane (FGM) templates with different structural and morphological gradients. Chitosan (CH) has been used in the past for similar purpose. However, the composite formulation of composite and tetracycline when cross-linked with glutaraldehyde have received little attention. Therefore, the purpose of the study was to investigate the drug loading and release characteristics of novel freeze gelated chitosan templates at different percentages of glutaraldehyde. These were cross-linked with 0.1 and 1% glutaraldehyde and loaded with doxycycline hyclate. The electron micrographs depicted porous morphology of neat templates. After cross-linking, these templates showed compressed ultrastructures. Computerized tomography analysis showed that the templates had 88 to 92% porosity with average pore diameter decreased from 78 to 44.9 μm with increasing concentration. Fourier transform infrared spectroscopy showed alterations in the glycosidic segment of chitosan fingerprint region which after drug loading showed a dominant doxycycline spectral composite profile. Interestingly, swelling profile was not affected by cross-linking either at 0.1 and 1% glutaraldehyde and template showed a swelling ratio of 80%, which gained equilibrium after 15 min. The drug release pattern also showed a 40 μg/mL of release after 24 h. These doxycycline-loaded templates show their tendency to be used in a functionally graded membrane facing the defect site.
  3. Daood U, Bandey N, Qasim SB, Omar H, Khan SA
    Acta Odontol Scand, 2011 Nov;69(6):367-73.
    PMID: 21449690 DOI: 10.3109/00016357.2011.569507
    To investigate the failure of 15 dental implants (Paragon/Zimmer) in relation to their surface quality.
  4. Daood U, Fawzy AS
    Arch Oral Biol, 2019 Feb;98:195-203.
    PMID: 30502562 DOI: 10.1016/j.archoralbio.2018.10.019
    OBJECTIVE: To investigate effects of HIFU on macrophage phenotype, surface micro-topography and nano-scale surface mechanical properties of dental cementum.

    MATERIALS AND METHODS: Root discs (2 mm thickness) were cut apical to CEJ and sectioned into quadrants. HIFU setup with bowl-shaped piezo ceramic transducer submerged in a water tank was used for exposure on each specimen for 15 s, 30 s or 60 s. The specimens of the control group were left without any HIFU exposure. HIFU was generated with a continuous sinusoidal wave of 120Vpp amplitude, 250 KHZ resonance-frequency and highest ultrasonic pressure of ∼10 bar at the focus. Specimens for SEM were viewed, and micro-topography characterization performed, using AFM and Ra parameter and surface area (SA) calculated by specialized SPM surface analysis software. For nano-indentation testing, experiments were carried out using AFM. Macrophage cell isolation and culturing was performed on cementum to receive the HIFU treatment at different time periods. Raman spectroscopy were scanned to create spectra perpendicular to the cementum substrate to analyze generation of standard spectra for Raman intensity ratio of hydroxyapatite normalized to the peaks ν1 960 cm-1. Data was expressed as means ± standard deviations and analyzed by one-way ANOVA in term of Ra, SA, H and Er. Different points for fluorescence intensity ratio were analyzed by Raman using Wilcoxon rank sum test.

    RESULTS: HIFU exposure at 60 s removed the smear layer and most of cementum appeared smoothened. AFM characterisation, showed a slight decrease in the irregularity of the surface as exposure time increased. Intact macrophages can be identified in control and all experimental HIFU groups. The level of fluorescence for the control and HIFU 15 and 30 s were low as compared to HIFU 60 s.

    CONCLUSION: If HIFU can be successfully implemented, it may be a possible alternative to current methods used in periodontal therapy to achieve smooth root surfaces.

  5. Bapat RA, Mak KK, Pichika MR, Pang JC, Lin SL, Khoo SP, et al.
    BMC Oral Health, 2024 Mar 25;24(1):382.
    PMID: 38528501 DOI: 10.1186/s12903-024-04069-0
    AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation.

    MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)).

    RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test.

    CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.

  6. Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, et al.
    BMC Oral Health, 2021 03 12;21(1):116.
    PMID: 33711992 DOI: 10.1186/s12903-021-01470-x
    BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin.

    METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21.

    RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention.

    CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.

  7. Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, et al.
    Biomater Sci, 2021 Jul 27;9(15):5344-5358.
    PMID: 34190236 DOI: 10.1039/d1bm00555c
    The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
  8. Daood U, Burrow MF, Yiu CKY
    Clin Oral Investig, 2020 Feb;24(2):649-661.
    PMID: 31115692 DOI: 10.1007/s00784-019-02928-7
    OBJECTIVE: Evaluate effect of quaternary ammonium silane (QAS) cavity disinfectant on cariogenic biofilm.

    MATERIALS AND METHODS: Single- (Streptococcus mutans or Lactobacillus acidophilus), dual- (Streptococcus mutans/Lactobacillus Acidophilus), and multi-species (Streptococcus mutans, Actinomyces naeslundii, and Streptococcus sanguis) biofilms were grown on acid-etched dentine discs. Biofilms were incubated (120 min/37 °C) and allowed to grow for 3 days anaerobically. Discs (no treatment) served as control (group 1). Groups II, III, IV, and V were then treated with 2% chlorhexidine, and 2%, 5%, and 10% QAS (20 s). Discs were returned to well plates with 300 μL of bacterial suspension and placed in anaerobic incubator at 37 °C and biofilms redeveloped for 4 days. Confocal microscopy, Raman, CFU, and MTT assay were performed.

    RESULTS: Raman peaks show shifts at 1450 cm-1, 1453 cm-1, 1457 cm-1, 1460 cm-1, and 1462 cm-1 for control, 2% CHX, 2%, 5%, and 10% QAS groups in multi-species biofilms. There was reduction of 484 cm-1 band in 10% QAS group. CLSM revealed densely clustered green colonies in control group and red confluent QAS-treated biofilms with significantly lower log CFU for single/dual species. Metabolic activities of Streptococcus mutans and Lactobacillus acidophilus decreased with increasing QAS exposure time.

    CONCLUSION: Quaternary ammonium silanes possess antimicrobial activities and inhibit growth of cariogenic biofilms.

    CLINICAL SIGNIFICANCE: Available data demonstrated use of QAS as potential antibacterial cavity disinfectant in adhesive dentistry. Experimental QAS can effectively eliminate caries-forming bacteria, when used inside a prepared cavity, and can definitely overcome problems associated with present available cavity disinfectants.

  9. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A
    Dent Mater, 2020 12;36(12):e386-e402.
    PMID: 33010944 DOI: 10.1016/j.dental.2020.09.008
    OBJECTIVES: Evaluate a new modified quaternary ammonium silane irrigant solution for its antimicrobial, cytotoxic and mechanical properties of dentine substrate.

    METHODS: Root canal preparation was performed using stainless steel K-files™ and F4 size protaper with irrigation protocols of 6% NaOCl + 2% CHX; 3.5% QIS; 2% QIS and sterile saline. Biofilms were prepared using E. faecalis adjusted and allowed to grow for 3 days, treated with irrigants, and allowed to grow for 7 days. AFM was performed and surface free energy calculated. MC3T3 cells were infected with endo irrigant treated E. faecalis biofilms. Raman spectroscopy of biofilms were performed after bacterial re-growth on root dentine and exposed to different irrigation protocols and collagen fibers analysed collagen fibers using TEM. Antimicrobial potency against E. faecalis biofilms and cytoxicity against 3T3 NIH cells were also. Resin penetration and MitoTracker green were also evaluated for sealer penetration and mitochondrial viability. Data were analysed using One-way ANOVA, principal component analysis and post-hoc Fisher's least-significant difference.

    RESULTS: Elastic moduli were maintained amongst control (5.5 ± 0.9) and 3.5% QIS (4.4 ± 1.1) specimens with surface free energy higher in QIS specimens. MC3T3 cells showed reduced viability in 6%NaOCl+2%CHX specimens compared to QIS specimens. DNA/purine were expressed in increased intensities in control and 6% NaOCl + 2% CHX specimens with bands around 480-490 cm-1 reduced in QIS specimens. 3.5% QIS specimens showed intact collagen fibrillar network and predominantly dead bacterial cells in confocal microscopy. 3.5% QIS irrigant formed a thin crust-type surface layer with cytoplasmic extensions of 3T3NIH spread over root dentine. Experiments confirmed MitoTracker accumulation in 3.5% treated cells.

    SIGNIFICANCE: Novel QIS root canal irrigant achieved optimum antimicrobial protection inside the root canals facilitating a toxic effect against the Enterococcus faecalis biofilm. Root dentine substrates exhibited optimum mechanical properties and there was viability of fibroblastic mitochondria.

  10. Daood U, Matinlinna JP, Fawzy AS
    Dent Mater, 2019 02;35(2):356-367.
    PMID: 30528297 DOI: 10.1016/j.dental.2018.11.031
    OBJECTIVE: Effect of d-alpha-tocopheryl poly(ethyleneglycol)-1000-succinate (VE-TPGS) with riboflavin-5'-phosphate solution on crosslinking of dentine collagen was investigated to analyze collagen's structural integrity.

    METHODS: VE-TPGS was added to RF-solution, at RF/VE-TPGS (w/w) ratios of 0.125/0.250 and 0.125/0.500. Demineralized dentine beams were used (10wt.% phosphoric acid), rinsed using deionized-water and analysed using ELISA (Human MMP2 ELISA; Human CTSK/Cathepsin-K for MMP2 and Cathepsin K analysis). AFM of dentine collagen-fibrils structure was done before and after dentine specimens' placement in mineralization solution and tested after 14days in artificial saliva/collagenase (AS/Co) solution. The specimens were tested after 24h in mineralization solution for surface/bulk elastic modulus. Nano-indentation was carried out for each specimen on intertubular-dentine with lateral spacing of 400nm. Reduced elastic-modulus and nano-hardness were calculated and collagen content was determined using hydroxyproline-assay. Micro-Raman were performed. TEM was carried out to study structural variations of dentine-collagen in artificial-saliva (collagenase). Data were presented as mean±standard deviation and analyzed by SPSS v.15, by analysis of variance.

    RESULTS: Synergetic effect of VE-TPGS was observed with RF through higher structural integrity of dentine collagen-fibrils shown by TEM/AFM. Superior surface/bulk mechanical stability was shown by nano-indentation/mechanical testing. Improvement in collagenase degradation resistance for hydroxyproline release was observed and lower endogenous-protease release of MMP-2/Cathepsin-K. Raman-analysis analysed chemical interactions between RF and collagen confirming structural-integrity of collagen fibrils after crosslinking. After 24h mineralization, AFM showed mineral depositions in close association with dentine-collagen fibrils with RF/VE-TPGS formulations.

    SIGNIFICANCE: Potential synergetic effect of RF/VE-TPGS was observed by reflection of higher structural integrity and conformational-stability of dentine-collagen fibrils.

  11. Fawzy AS, Daood U, Matinlinna JP
    Dent Mater, 2019 07;35(7):979-989.
    PMID: 31003759 DOI: 10.1016/j.dental.2019.04.001
    OBJECTIVE: This study introduced the potential and proof-of-concept of high intensity focused ultrasound (HIFU) technology for dentin-surface treatment for resin-dentin bonding without acid-aided demineralization. This new strategy could provide a way to enhance interface-integrity and bond-durability by changing the nature of dentin-substrate; bonded-interface structure and properties; and minimizing denuded-collagen exposure.

    METHODS: The interaction between HIFU waves and dentin-surface in terms of structural, mechanical and chemical variations were investigated by SEM, TEM, AFM, nano-indentation and Raman-analysis. The bonding between HIFU-treated dentin and two-step, etch-and-rinse, adhesive was preliminary explored by characterizing dentin-bound proteases activities, resin-dentin interfacial morphology and bond-durability with HIFU exposure at different time-points of 60, 90 and 120 s compared to conventional acid-etching technique.

    RESULTS: With the increase in HIFU exposure-time from 60-to-120 s, HIFU waves were able to remove the smear-layer, expose dentinal-tubules and creating textured/rough dentin surface. In addition, dentin surfaces showed a pattern of interlocking ribbon-like minerals-coated collagen-fibrils protruding from the underlaying amorphous dentin-background with HIFU exposure for 90 s and 120 s. This characteristic pattern of dentin-surface showing inorganic-minerals associated/aligned with collagen-fibrils, with 90-to-120 s HIFU-treatment, was confirmed by the Raman-analysis. HIFU-treated specimens showed higher nano-indentation properties and lower concentrations of active MMP-2 and Cathepsin-K compared to the acid-etched specimens. The resin-dentin bonded interface revealed the partial/complete absence of the characteristic hybrid-layer formed with conventional etch-and-rinse bonding strategy. Additionally, resin-infiltration and resin-tags formation were enhanced with the increase in HIFU exposure-time to 120 s. Although, all groups showed significant decrease in bond-strength after 12 months compared to 24 h storage in artificial saliva, groups exposed to HIFU for 90 s and 120 s showed significantly higher μTBS compared to the control acid-etched group.

    SIGNIFICANCE: The implementation of HIFU-technology for dental hard-tissues treatment could be of potential significance in adhesive/restorative dentistry owing to its ability of controlled, selective and localised combined tissue alteration/ablation effects.

  12. Daood U, Tsoi JKH, Neelakantan P, Matinlinna JP, Omar HAK, Al-Nabulsi M, et al.
    Dent Mater, 2018 08;34(8):1175-1187.
    PMID: 29779627 DOI: 10.1016/j.dental.2018.05.005
    OBJECTIVE: Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive.

    METHODS: Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA.

    RESULTS: The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties.

    SIGNIFICANCE: The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.

  13. Daood U, Yiu CKY
    Dent Mater, 2019 02;35(2):206-216.
    PMID: 30509480 DOI: 10.1016/j.dental.2018.11.018
    OBJECTIVE: To evaluate the transdentinal cytotoxicity and macrophage phenotype response to a novel quaternary ammonium silane (QAS) cavity disinfectant.

    METHODS: NIH 3T3 mouse fibroblasts were cultured in Dulbecco's Modified Eagle's Medium and incubated for 3 days. The cells (3×104) were seeded on the pulpal side of dentine discs and the occlusal side of the discs were treated with different cavity disinfectants: Group 1: de-ionized water (control); Group 2: 2% chlorhexidine (CHX); Group 3: 2% QAS; Group 4: 5% QAS, and Group 5: 10% QAS. Cell morphology of NIH 3T3 cells was examined using scanning electron microscopy (SEM) and cell viability was assessed using Trypan blue assay. The eluates were collected and applied on cells seeded in 24-well plates. The total protein production, alkaline phosphatase activity and deposition of mineralized nodules were evaluated after 7 and 14 days. Immunofluorescence staining was performed on the samples with primary antibodies of CD68+, CD80+, and CD163+ assessing the macrophage M1/M2 phenotypes. The macrophages were imaged using a confocal scanning light microscope with an excitation wavelength of 488nm.

    RESULTS: No significant difference in cell viability (p<0.0001), total protein production (p<0.01) and mineralized nodule production (p<0.05) was found between 2% QAS and the control, which was significantly higher than 2% CHX, 5% and 10% QAS after 14 days. Alkaline phosphatase production of 2% QAS was significantly lower than the control (p<0.001), but higher than 2% CHX at 14 days. The M1/M2 macrophage ratio was also significantly lower in the 2% and 10% QAS groups (p<0.05) compared to the control and 2% CHX groups.

    SIGNIFICANCE: The 2% QAS cavity disinfectant does not have cytotoxic effects on 3T3 NIH mouse fibroblast cells and the predominance of the anti-inflammatory phenotype after its application may stimulate healing and tissue repair.

  14. Daood U, Sauro S, Pichika MR, Omar H, Liang Lin S, Fawzy AS
    Dent Mater, 2020 01;36(1):145-156.
    PMID: 31818524 DOI: 10.1016/j.dental.2019.11.003
    OBJECTIVE: To modify a universal dentine adhesive with different concentrations of riboflavin and D-Alpha 1000 Succinate polyethylene (VE-TPGS) as a chemical enhancer and to assess the micro-tensile bond strength (24h/12 months), determine resin penetration, measurement of intermolecular interactions and cytotoxicity.

    MATERIALS AND METHODS: An experimental adhesive system based on bis-GMA, HEMA and hydrophobic monomer was doped with RF0.125 (RF - Riboflavin) or RF/VE-TPGS (0.25/0.50) and submitted to μTBS evaluation. Resin dentine slabs were prepared and examined using SEM and TEM. Adhesion force was analysed on ends of AFM cantilevers deflection. Quenched peptide assays were performed using fluorescence scanner and wavelengths set to 320nm and 405nm. Cytotoxicity was assessed using human peripheral blood mononuclear cell line. Molecular docking studies were carried out using Schrödinger small-molecule drug discovery suite 2018-2. Data from viable cell results was analyzed using one-way ANOVA. Bond strength values were analysed by two-way ANOVA. Nonparametric results were analyzed using a Kruskal-Wallis test at a 0.05 significance level.

    RESULTS: RF/VE-TPGS0.25 groups showed highest bond strength results after 24-h storage in artificial saliva (p<0.05). RF/VE-TPGS0.50 groups showed increased bond strength after 12-months of ageing. RF/VE-TPGS modified adhesives showed appreciable presence of a hybrid layer. Packing fraction indicated solid angle profiles describing well sized density and topology relations for the RF/VE-TPGS adhesives, in particular with the RF/VE-TPGS0.50 specimens. Qualitative analysis of the phenotype of macrophages was prominently CD163+ in the RF/VE-TPGS0.50. Both the compounds showed favourable negative binding energies as expressed in terms of 'XP GScore'.

    CONCLUSION: New formulations based on the incorporation of RF/VE-TPGS in universal adhesives may be of significant potential in facilitating penetration, distribution and uptake of riboflavin within the dentine surface.

  15. Daood U, Akram Z, Matinlinna JP, Fawzy AS
    Dent Mater, 2019 07;35(7):1017-1030.
    PMID: 31064669 DOI: 10.1016/j.dental.2019.04.005
    OBJECTIVE: The aim of this study was to investigate EDC-assisted collagen crosslinking effect with different concentrations of tiopronin-protected gold (TPAu) nanoparticles on demineralized dentine.

    METHODS: TPAu nanoparticles were fabricated from 0.31-g tetrachloroauric acid and 0.38-g of N-(2-mercaptopropionyl) glycine (2.4-mmol). Then co-dissolved using 35-mL of 6:1 methanol/acetic acid and mixed using NaBH4. EDC (0.3-M) was conjugated to TPAu nanoparticles at TPAU/EDC-0.25:1, and TPAU/EDC-0.5:1 treatment formulations ratios. Dentin specimens treated with 0.3-M EDC solution alone or left untreated were used as control. Nanoparticles formulations were characterized in term of particles morphology and size, Zeta potential, thermogravimetric analysis and small-angle X-ray scattering. Dentin substrates were characterized in term of TEM investigation, dentin proteases characterization, hydroxyproline liberation, elastic modulus measurement, Raman analysis and confocal microscopy viewing.

    RESULTS: TEM evaluation of tiopronin protected gold nanoparticles dispersion revealed nano-clusters formations in both groups. However, based on our TEM measurements, the particle-size was ranging from ˜20 to 50 nm with spherical core-shape which were almost similar for both TPAu/EDC ratios (0.5:1 and 0.25:1). Zeta potential measurements indicate negative nanoparticles surface charge. SAXS profiles for both formulations, suggest a typical profile for uni-lamellar nanoparticles. Superior dentin collagen cross-linking effect was found with the TPAu/EDC nanoparticles formulations compared to the control and EDC treated groups.

    SIGNIFICANCE: Cross-linking of dentin collagen using TPAu coupled with EDC through TPAu/EDC nanoparticles formulations is of potential significance in improving the biodegradation resistance, proteases inhibition, mechanical and structural stability of demineralized dentin substrates. In addition, the cross-linking effect is dependent on TPAu/EDC ratio, whereas higher cross-linking effect was found at TPAu/EDC ratio of 0.5:1.

  16. Daood U, Parolia A, Elkezza A, Yiu CK, Abbott P, Matinlinna JP, et al.
    Dent Mater, 2019 09;35(9):1264-1278.
    PMID: 31201019 DOI: 10.1016/j.dental.2019.05.020
    OBJECTIVE: To analyze effect of NaOCl+2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate.

    METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.

    RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17μm>, 14.1μm> and 13.2μm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS.

    SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.

  17. Daood U, Fawzy AS
    Dent Mater, 2020 03;36(3):456-467.
    PMID: 32008748 DOI: 10.1016/j.dental.2020.01.005
    OBJECTIVE: The aim is to investigate the potential significance of combining minimally invasive high-intensity focused ultrasound (HIFU) with hydroxyapatite (HA) nanorods treatment for the remineralization of demineralized coronal dentine-matrix.

    METHODS: HA having nanorods structure were synthetized using ultrasonication with precipitation method. HA nanorods were characterized by TEM for average-size/shape. Following phosphoric acid demineralization, dentine specimens were treated with HA-nanorods with/without subsequent HIFU exposure for 5 s, 10 s and 20 s then stored in artificial saliva for 1-month. Dentine specimens were characterized using different SEM and Raman spectroscopic techniques. In addition, the biochemical stability and HA-nanorods were examined using ATR-FTIR to observe attachment of nanoparticles. Also, surface nanoindentation properties were evaluated using AFM in tapping-mode.

    RESULTS: HA-nanorods displayed well-defined, homogenous plate-like nanostructure. TEM revealed intact collagen-fibrils network structure with high density due to obliteration of interfibrillar spaces with clear evidence of remineralization in combined HA/HIFU treatment. With HA-nanorods treatment collagen-network structure was visible, consisting of fibrils interlaced into a compact pattern with evidence of minerals deposition. AFM investigation revealed clear mineral formation with the increase of HIFU exposure time. Bands associated with inorganic phase dominate well in HIFU exposed specimens with PO stretching within dentine mineral identified at 960 cm-1. Characteristic dentine structure for control and HIFU 20 s specimens is reflected as oscillatory mean Amide-I intensity with measurement giving a precise sinusoidal response of polarization angle β within dentinal tissue. Nanoindentation testing showed a gradual significant increase in elastic-modulus with the increase in HIFU exposure time after 1-month storage. FTIR spectrum of the HIFU exposed dentine displayed bands at 1650 cm-1, 1580 cm-1 and 1510 cm-1 that can be attributed to Amide-I, II and III.

    SIGNIFICANCE: The synergetic effect of HIFU exposure on remineralization potential of demineralized dentine-matrix following nano-hydroxyapatite treatment was revealed. This synergetic effect is dependent on HIFU exposure time.

  18. Daood U, Bapat RA, Sidhu P, Ilyas MS, Khan AS, Mak KK, et al.
    Dent Mater, 2021 10;37(10):1511-1528.
    PMID: 34420798 DOI: 10.1016/j.dental.2021.08.001
    OBJECTIVES: The aim of the current project was to study the antimicrobial efficacy of a newly developed irrigant, k21/E against E. faecalis biofilm.

    METHODS: Root canals were instrumented and randomly divided into the following groups: irrigation with saline, 6% NaOCl (sodium hypochlorite), 6% NaOCl+2% CHX (Chlorhexidine), 2% CHX, 0.5% k21/E (k21 - quaternary ammonium silane) and 1% k21/E. E. faecalis were grown (3-days) (1×107CFU mL-1), treated, and further cultured for 11-days. Specimens were subjected to SEM, confocal and Raman analysis and macrophage vesicles characterized along with effect of lipopolysaccharide treatment. 3T3 mouse-fibroblasts were cultured for alizarin-red with Sortase-A active sites and Schrödinger docking was performed. TEM analysis of root dentin substrate with matrix metalloproteinases profilometry was also included. A cytotoxic test analysis for cell viability was measured by absorbance of human dental pulp cells after exposure to different irrigant solutions for 24h. The test percentages have been highlighted in Table 1.

    RESULTS: Among experimental groups, irrigation with 0.5% k21/E showed phase separation revealing significant bacterial reduction and lower phenylalanine 1003cm-1 and Amide III 1245cm-1 intensities. Damage was observed on bacterial cell membrane after use of k21/E. No difference in exosomes distribution between control and 0.5%k21/E was observed with less TNFα (*p<0.05) and preferential binding of SrtA. TEM images demonstrated integrated collagen fibers in control and 0.5%k21/E specimens and inner bacterial membrane damage after k21/E treatment. The k21 groups appeared to be biocompatible to the dental pulpal cells grown for 24h.

    SIGNIFICANCE: Current investigations highlight potential advantages of 0.5% k21/E as irrigation solution for root canal disinfection.

  19. Saxena K, Ann CM, Azwar MABM, Banavar SR, Matinlinna J, Peters OA, et al.
    Dent Mater, 2024 Mar 14.
    PMID: 38490919 DOI: 10.1016/j.dental.2024.02.010
    OBJECTIVES: Evaluate the ability of strontium fluoride on bond strength and enamel integrity after incorporation within orthodontic adhesive system as a delivery vehicle.

    METHODS: Experimental orthodontic adhesive system Transbond™ XT were modified with 1% Sr2+, 0.5% SrF2, 1% strontium, 0.5% Sr2+, 1% F-, 0.5% F-, and no additions were control. Mixing of formulation was monitored using Fourier transform infrared spectroscopy. Small-molecule drug-discovery suite was used to gain insights into Sr2+, F-, and SrF2 binding. Shear bond testing was performed after 6-months of ageing. Enamel blocks were cut, and STEM pictures were recorded. Specimens were indented to evaluate elastic modulus. Raman microscope was used to collect Raman spectra and inspected using a scanning electron microscope. Crystal structural analysis was performed using X-ray diffraction. Effect of material on cellular proliferation was determined. Confocal was performed to evaluate the effect of formulation on biofilms.

    RESULTS: FTIR of modified adhesives depicted peak changes within range due to various functional groups existing within samples. TEM represented structurally optimized hexagonal unit-cell of hydroxyapatite. Mean shear bond strength is recorded highest for Transbond XT with 1% SrF2. Dead bacterial percentage appeared higher in 0.5% SrF2 and 1% F- specimens. Crystal lengths showed an increase in 0.5% and 1% SrF2 specimens. Phase contrast within TEM images showed a union of 0.5% SrF2 crystal with enamel crystal with higher elastic modulus and highly mineralized crystalline hydroxyapatite. Intensity of ν1 PO43- and ν1 CO32- along with carbonate - / ν1PO43- ratio displayed good association with strontium fluoride. The formulation showed acceptable cell biocompatibility (p 

  20. Imad R, Sheikh Z, Rao Pichika M, Kit-Kay M, Siddiqui RA, Nawaid Shah SN, et al.
    Exp Cell Res, 2023 Sep 01;430(1):113687.
    PMID: 37356748 DOI: 10.1016/j.yexcr.2023.113687
    BACKGROUND: The ability of cancer cells to be invasive and metastasize depend on several factors, of which the action of protease activity takes center stage in disease progression.

    PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line.

    MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented.

    RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing.

    CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links