Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
  2. Daood U, Parolia A, Elkezza A, Yiu CK, Abbott P, Matinlinna JP, et al.
    Dent Mater, 2019 09;35(9):1264-1278.
    PMID: 31201019 DOI: 10.1016/j.dental.2019.05.020
    OBJECTIVE: To analyze effect of NaOCl+2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate.

    METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.

    RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17μm>, 14.1μm> and 13.2μm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS.

    SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.

  3. Daood U, Bapat RA, Sidhu P, Ilyas MS, Khan AS, Mak KK, et al.
    Dent Mater, 2021 10;37(10):1511-1528.
    PMID: 34420798 DOI: 10.1016/j.dental.2021.08.001
    OBJECTIVES: The aim of the current project was to study the antimicrobial efficacy of a newly developed irrigant, k21/E against E. faecalis biofilm.

    METHODS: Root canals were instrumented and randomly divided into the following groups: irrigation with saline, 6% NaOCl (sodium hypochlorite), 6% NaOCl+2% CHX (Chlorhexidine), 2% CHX, 0.5% k21/E (k21 - quaternary ammonium silane) and 1% k21/E. E. faecalis were grown (3-days) (1×107CFU mL-1), treated, and further cultured for 11-days. Specimens were subjected to SEM, confocal and Raman analysis and macrophage vesicles characterized along with effect of lipopolysaccharide treatment. 3T3 mouse-fibroblasts were cultured for alizarin-red with Sortase-A active sites and Schrödinger docking was performed. TEM analysis of root dentin substrate with matrix metalloproteinases profilometry was also included. A cytotoxic test analysis for cell viability was measured by absorbance of human dental pulp cells after exposure to different irrigant solutions for 24h. The test percentages have been highlighted in Table 1.

    RESULTS: Among experimental groups, irrigation with 0.5% k21/E showed phase separation revealing significant bacterial reduction and lower phenylalanine 1003cm-1 and Amide III 1245cm-1 intensities. Damage was observed on bacterial cell membrane after use of k21/E. No difference in exosomes distribution between control and 0.5%k21/E was observed with less TNFα (*p<0.05) and preferential binding of SrtA. TEM images demonstrated integrated collagen fibers in control and 0.5%k21/E specimens and inner bacterial membrane damage after k21/E treatment. The k21 groups appeared to be biocompatible to the dental pulpal cells grown for 24h.

    SIGNIFICANCE: Current investigations highlight potential advantages of 0.5% k21/E as irrigation solution for root canal disinfection.

  4. Bapat RA, Libat R, Yuin OS, Parolia A, Ilyas MS, Khan AS, et al.
    Heliyon, 2023 Aug;9(8):e19282.
    PMID: 37664740 DOI: 10.1016/j.heliyon.2023.e19282
    OBJECTIVES: Successful root canal therapy is dependent on the efficacy of complete instrumentation and adequate use of chemical irrigant to eliminate the biofilm from dentin surface. The aim of the study was to examine antibiofilm and antimicrobial effectiveness of newly formulated Quaternary ammonium silane (QAS/also codenamed K21; against Fusobacterium nucleatum (F. nucleatum) and Enterococcus faecalis (E. faecalis) biofilm on radicular dentin with evaluation of the anti-inflammatory consequence in vivo.

    METHODS: Fourier Transform Infrared Spectroscopy (FTIR) was performed after complete hydrolysis of K21 solution. Human teeth were inoculated with biofilms for 7-days followed by treatment with various irrigants. The irrigant groups were Sodium hypochlorite [NaOCl (6%)], Chlorhexidine [CHX (2%)], K21 (0.5%), K21 (1%) and Saline. Scanning electron microscopy (SEM) was performed for biofilm and resin-dentin penetration. Transmission Electron Microscopy (TEM) of biofilms was done to evaluate application of K21. For in vivo evaluation, Albino wistar rats were injected subcutaneously and sections were stained with haematoxylin/eosin. Macrophage, M1/M2 expression were evaluated along with molecular simulation. Raman measurements were done on dried biofilms.

    RESULTS: FTIR K21 specimens demonstrated presence of ethanol/silanol groups. Raman band at 1359 cm-1 resemble to -CH2- wagging displaying 29Si atoms in Nuclear Magnetic Resonance (NMR). 0.5%K21 showed cells exhibiting folded membranes. SEM showed staggering amount of resin tags with 0.5% K21 group. TEM showed membrane disruption in K21-groups. K21 groups were initially irritant, which subsided completely afterwards showing increased CD68. K21 and MMP/collagen complex was thermodynamically favourable.

    CONCLUSION: K21 root canal irrigant was able to penetrate bacterial wall and can serve as a potential irrigant for therapeutic benefits. Expression of M2 polarized subsets showed K21 can serve in resolving inflammation and potentiate tissue repair.

  5. Daood U, Malik AA, Ilyas MS, Ahmed A, Qasim SSB, Banavar SR, et al.
    J Biomed Mater Res A, 2021 Nov;109(11):2392-2406.
    PMID: 34018311 DOI: 10.1002/jbm.a.37221
    The aim of the study is to investigate a new formulation, based on dioctadecyldimethyl ammonium-bromide (QA) and riboflavin (RF), combining antimicrobial activities and protease inhibitory properties with collagen crosslinking without interference to bonding capabilities in a rabbit model. Quaternary ammonium riboflavin (QARF) experimental adhesives modified with dioctadecyldimethyl ammonium-bromide and riboflavin were bonded (0.5/1.0/2.0%) to rabbit dentin to investigate for pulpal-histology, interfacial-morphology, transmission electron microscopy, mechanical properties, collagen crosslinking, micro-Raman analysis, antimicrobial, and anti-protease activities. Collagen type-I molecules were generated using molecular-docking. Odontoblasts appeared with normal histology, were seen in controls with no inflammatory cells detected in 0.5% specimens at day 7 and mild inflammatory response at day 30. In QARF 2.0%, inflammatory cells were not detected at day 7 and 30 (p 
  6. Akram Z, Al-Shareef SA, Daood U, Asiri FY, Shah AH, AlQahtani MA, et al.
    Photomed Laser Surg, 2016 Apr;34(4):137-49.
    PMID: 26982216 DOI: 10.1089/pho.2015.4076
    The aim of this study was to assess the bactericidal efficacy of antimicrobial photodynamic dynamic therapy (aPDT) as an adjunct to scaling and root planing (SRP) against periodontal pathogens.
  7. Neelakantan P, Romero M, Vera J, Daood U, Khan AU, Yan A, et al.
    Int J Mol Sci, 2017 Aug 11;18(8).
    PMID: 28800075 DOI: 10.3390/ijms18081748
    Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.
  8. Imad R, Sheikh Z, Rao Pichika M, Kit-Kay M, Siddiqui RA, Nawaid Shah SN, et al.
    Exp Cell Res, 2023 Sep 01;430(1):113687.
    PMID: 37356748 DOI: 10.1016/j.yexcr.2023.113687
    BACKGROUND: The ability of cancer cells to be invasive and metastasize depend on several factors, of which the action of protease activity takes center stage in disease progression.

    PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line.

    MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented.

    RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing.

    CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.

  9. Daood U, Aati S, Akram Z, Yee J, Yong C, Parolia A, et al.
    Biomater Sci, 2021 Jul 27;9(15):5344-5358.
    PMID: 34190236 DOI: 10.1039/d1bm00555c
    The aim of this study was to characterize multiscale interactions between high intensity focused ultrasound (HIFU) and dentin collagen and associated matrix-metalloproteinases, in addition to the analysis of the effect of HIFU on bacterial biofilms and biological properties. Dentin specimens were subjected to 5, 10 or 20 s HIFU. XPS spectra were acquired and TEM was performed on dentin slabs. Collagen orientation was performed using Raman spectroscopy. Calcium measurements in human dental pulpal cells (hDPCs) were carried out after 7 and 14 days. For macrophages, CD36+ and CD163+ were analysed. Biofilms were analyzed using CLSM. Tandem mass spectroscopy was performed for the detection of hydroxyproline sequences along with human MMP-2 quantification. Phosphorus, calcium, and nitrogen were detected in HIFU specimens. TEM images demonstrated the collagen network appearing to be fused together in the HIFU 10 and 20 s specimens. The band associated with 960 cm-1 corresponds to the stretching ν1 PO43-. The control specimens showed intensive calcium staining followed by HIFU 20 s > HIFU 10 s > HIFU 5 s specimens. Macrophages in the HIFU specimens co-expressed CD80+ and CD163+ cells. CLSM images showed the HIFU treatment inhibiting bacterial growth. SiteScore propensity determined the effect of HIFU on the binding site with a higher DScore representing better site exposure on MMPs. Multiscale mapping of dentin collagen after HIFU treatment showed no deleterious alterations on the organic structure of dentin.
  10. Daood U, Abduljabbar T, Al-Hamoudi N, Akram Z
    J Periodontal Res, 2018 Feb;53(1):123-130.
    PMID: 28940417 DOI: 10.1111/jre.12496
    BACKGROUND AND OBJECTIVE: The aim of the present study was to compare clinical periodontal parameters and to assess the release of C-telopeptides pyridinoline cross-links (ICTP) and C-terminal crosslinked telopeptide (CTX) from gingival collagen of naswar (NW) and non-naswar (control) dippers.

    MATERIAL AND METHODS: Eighty-seven individuals (42 individuals consuming NW and 45 controls) were included. Clinical (plaque index, bleeding on probing, probing depth and clinical attachment loss) and radiographic (marginal bone loss) periodontal parameters were compared among NW and control groups. Gingival specimens were taken from subjects in NW and control groups, assessed for ICTP and CTX levels (using ELISA) and analyzed using micro-Raman spectroscopy. The significance of differences in periodontal parameters between the groups was determined using Kruskal-Wallis and Mann-Whitney U tests. The percent loss of dry mass over exposure time and the rate of release of ICTP and CTX from all groups were compared using the paired t-test to examine the effects of exposure time.

    RESULTS: Clinical and radiographic periodontal parameters were significantly higher in the NW group than the control group (P 

  11. Al-Nabulsi M, Daud A, Yiu C, Omar H, Sauro S, Fawzy A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394743 DOI: 10.3390/ma12162504
    Objective: To evaluate the effect of a new application method of bulk-fill flowable composite resin material on bond-strength, nanoleakage, and mechanical properties of dentine bonding agents.

    MATERIALS AND METHODS: Sound extracted human molars were randomly divided into: manufacturer's instructions (MI), manual blend 2 mm (MB2), and manual blend 4 mm (MB4). Occlusal enamel was removed and flattened, dentin surfaces were bonded by Prime & Bond universal (Dentsply and Optibond FL, Kerr). For the MI group, adhesives were applied following the manufacturer's instructions then light-cured. For MB groups, SDR flow+ bulk-fill flowable composite resin was applied in 2- or 4-mm increment then manually rubbed by a micro brush for 15 s with uncured dentine bonding agents and the mixture was light-cured. Composite buildup was fabricated incrementally using Ceram.X One, Dentsply nanohybrid composite resin restorative material. After 24-h water storage, the teeth were sectioned to obtain beams of about 0.8 mm2 for 24-h and thermocycled micro-tensile bond strength at 0.5 mm/min crosshead speed. Degree of conversion was evaluated with micro-Raman spectroscopy. Contraction gaps at 24 h after polymerization were evaluated and atomic force microscopy (AFM) nano-indentation processes were undertaken for measuring the hardness across the interface. Depth of resin penetration was studied using a scanning electron microscope (SEM). Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Nanoindentation hardness was separately analyzed using one-way ANOVA.

    RESULTS: Factors "storage F = 6.3" and "application F = 30.11" significantly affected the bond strength to dentine. For Optibond FL, no significant difference in nanoleakage was found in MI/MB4 groups between baseline and aged specimens; significant difference in nanoleakage score was observed in MB2 groups. Confocal microscopy analysis showed MB2 Optibond FL and Prime & Bond universal specimens diffusing within the dentine. Contraction gap was significantly reduced in MB2 specimens in both adhesive systems. Degree of conversion (DC) of the MB2 specimens were numerically more compared to MS1 in both adhesive systems.

    CONCLUSION: Present study suggests that the new co-blend technique might have a positive effect on bond strengths of etch-and-rinse adhesives to dentine.

  12. Farook TH, Ahmed S, Jamayet NB, Rashid F, Barman A, Sidhu P, et al.
    Sci Rep, 2023 Jan 28;13(1):1561.
    PMID: 36709380 DOI: 10.1038/s41598-023-28442-1
    The current multiphase, invitro study developed and validated a 3-dimensional convolutional neural network (3D-CNN) to generate partial dental crowns (PDC) for use in restorative dentistry. The effectiveness of desktop laser and intraoral scanners in generating data for the purpose of 3D-CNN was first evaluated (phase 1). There were no significant differences in surface area [t-stat(df) = - 0.01 (10), mean difference = - 0.058, P > 0.99] and volume [t-stat(df) = 0.357(10)]. However, the intraoral scans were chosen for phase 2 as they produced a greater level of volumetric details (343.83 ± 43.52 mm3) compared to desktop laser scanning (322.70 ± 40.15 mm3). In phase 2, 120 tooth preparations were digitally synthesized from intraoral scans, and two clinicians designed the respective PDCs using computer-aided design (CAD) workflows on a personal computer setup. Statistical comparison by 3-factor ANOVA demonstrated significant differences in surface area (P 
  13. Bijle MN, Pichika MR, Mak KK, Parolia A, Babar MG, Yiu C, et al.
    Molecules, 2021 Oct 31;26(21).
    PMID: 34771014 DOI: 10.3390/molecules26216605
    This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
  14. Qasim SSB, Nogueira LP, Fawzy AS, Daood U
    AAPS PharmSciTech, 2020 Sep 01;21(7):250.
    PMID: 32875436 DOI: 10.1208/s12249-020-01778-x
    The correct spelling of the second author's name is Liebert Parreiras Nogueira.
  15. Sidhu P, Sultan OS, Math SY, Malik NA, Wilson NHF, Lynch CD, et al.
    J Dent, 2021 07;110:103683.
    PMID: 33957189 DOI: 10.1016/j.jdent.2021.103683
    OBJECTIVE: To investigate the current and future teaching of posterior composite restorations in undergraduate curricula in Malaysian dental schools.

    METHODS: A 24-item validated questionnaire including closed and open questions on the teaching of posterior composites was emailed to faculty members in all 13 Dental Schools in Malaysia. Responses were compiled on Excel and analysed.

    RESULTS: All 13 dental schools responded to the survey yielding a 100 % response. All schools indicated the use of posterior composites for 2- and 3-surface cavities in premolars and molars. The didactic teaching time devoted to composites was greater than for amalgam (38 h vs 29 h). Clinically, most posterior restorations placed by students were composites (average 74.1 %, range 10 %-100 %); the remaining 25.9 % were amalgams (range, 0 %-50 %). Slot-type cavities were the preparation techniques most commonly taught (n = 11,84.6 %). The use of rubber dam for moisture control was mandatory in most schools (n = 11, 84.6 %). History of adverse reaction to composites was found to be the most common contraindication to composite placement. The phase down of teaching and use of amalgam in Malaysia is expected to occur within the next six years.

    CONCLUSION: The trend to increase the teaching of posterior composites reported for other countries is confirmed by the findings from Malaysian dental schools. Notwithstanding this trend, the use of amalgam is still taught, and future studies are required to investigate the implications of the phase down of amalgam in favour of posterior composites.

    CLINICAL SIGNIFICANCE: Notwithstanding the increase in the teaching of posterior composites there is a pressing need to update and refine clinical guidelines for the teaching of posterior composites globally.

  16. Daood U, Akram Z, Matinlinna JP, Fawzy AS
    Dent Mater, 2019 07;35(7):1017-1030.
    PMID: 31064669 DOI: 10.1016/j.dental.2019.04.005
    OBJECTIVE: The aim of this study was to investigate EDC-assisted collagen crosslinking effect with different concentrations of tiopronin-protected gold (TPAu) nanoparticles on demineralized dentine.

    METHODS: TPAu nanoparticles were fabricated from 0.31-g tetrachloroauric acid and 0.38-g of N-(2-mercaptopropionyl) glycine (2.4-mmol). Then co-dissolved using 35-mL of 6:1 methanol/acetic acid and mixed using NaBH4. EDC (0.3-M) was conjugated to TPAu nanoparticles at TPAU/EDC-0.25:1, and TPAU/EDC-0.5:1 treatment formulations ratios. Dentin specimens treated with 0.3-M EDC solution alone or left untreated were used as control. Nanoparticles formulations were characterized in term of particles morphology and size, Zeta potential, thermogravimetric analysis and small-angle X-ray scattering. Dentin substrates were characterized in term of TEM investigation, dentin proteases characterization, hydroxyproline liberation, elastic modulus measurement, Raman analysis and confocal microscopy viewing.

    RESULTS: TEM evaluation of tiopronin protected gold nanoparticles dispersion revealed nano-clusters formations in both groups. However, based on our TEM measurements, the particle-size was ranging from ˜20 to 50 nm with spherical core-shape which were almost similar for both TPAu/EDC ratios (0.5:1 and 0.25:1). Zeta potential measurements indicate negative nanoparticles surface charge. SAXS profiles for both formulations, suggest a typical profile for uni-lamellar nanoparticles. Superior dentin collagen cross-linking effect was found with the TPAu/EDC nanoparticles formulations compared to the control and EDC treated groups.

    SIGNIFICANCE: Cross-linking of dentin collagen using TPAu coupled with EDC through TPAu/EDC nanoparticles formulations is of potential significance in improving the biodegradation resistance, proteases inhibition, mechanical and structural stability of demineralized dentin substrates. In addition, the cross-linking effect is dependent on TPAu/EDC ratio, whereas higher cross-linking effect was found at TPAu/EDC ratio of 0.5:1.

  17. Daood U, Fawzy A
    J Mech Behav Biomed Mater, 2023 Apr;140:105737.
    PMID: 36827934 DOI: 10.1016/j.jmbbm.2023.105737
    The aim is to evaluate the development of an experimental multi-mode/Universal resin-based dentin adhesive modified with synthetic Mg2+ doped hydroxyapatite crystals (HAp) having self-remineralization and antibiofilm properties. HAp doped with Mg2+ was prepared by the precipitation method. Experimental adhesives were subjected to degree of conversion and X-ray diffraction test for size and crystal structure. Bond strength was tested, and electron microscopy (SEM/TEM) imaging of resin-dentin interface was done along with nanoleakage, nanoindentation, confocal and Raman analyses. S. mutans was analysed using CLSM images against modified adhesive specimens. Nucleating abilities within the resin-dentin specimens are determined by measuring Ca2+. Alkaline phosphatase, Runx2, and Ocn transcripts are amplified using quantitative polymerase chain reaction (q-PCR). A calcium assay is performed to quantify level of mineralisation. When compared to control adhesives, the 0.5% Hap/Mg2+ containing experimental dentin adhesive demonstrated improved interaction with dentin. The preservation of uniform intact hybrid layer with the absence of nanoleakage indicated dentin bond integrity with 0.5% HAP/Mg2+ modified adhesive. Self-remineralization and antibiofilm potentials are supported.
  18. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
  19. Daood U, Burrow MF, Yiu CKY
    Clin Oral Investig, 2020 Feb;24(2):649-661.
    PMID: 31115692 DOI: 10.1007/s00784-019-02928-7
    OBJECTIVE: Evaluate effect of quaternary ammonium silane (QAS) cavity disinfectant on cariogenic biofilm.

    MATERIALS AND METHODS: Single- (Streptococcus mutans or Lactobacillus acidophilus), dual- (Streptococcus mutans/Lactobacillus Acidophilus), and multi-species (Streptococcus mutans, Actinomyces naeslundii, and Streptococcus sanguis) biofilms were grown on acid-etched dentine discs. Biofilms were incubated (120 min/37 °C) and allowed to grow for 3 days anaerobically. Discs (no treatment) served as control (group 1). Groups II, III, IV, and V were then treated with 2% chlorhexidine, and 2%, 5%, and 10% QAS (20 s). Discs were returned to well plates with 300 μL of bacterial suspension and placed in anaerobic incubator at 37 °C and biofilms redeveloped for 4 days. Confocal microscopy, Raman, CFU, and MTT assay were performed.

    RESULTS: Raman peaks show shifts at 1450 cm-1, 1453 cm-1, 1457 cm-1, 1460 cm-1, and 1462 cm-1 for control, 2% CHX, 2%, 5%, and 10% QAS groups in multi-species biofilms. There was reduction of 484 cm-1 band in 10% QAS group. CLSM revealed densely clustered green colonies in control group and red confluent QAS-treated biofilms with significantly lower log CFU for single/dual species. Metabolic activities of Streptococcus mutans and Lactobacillus acidophilus decreased with increasing QAS exposure time.

    CONCLUSION: Quaternary ammonium silanes possess antimicrobial activities and inhibit growth of cariogenic biofilms.

    CLINICAL SIGNIFICANCE: Available data demonstrated use of QAS as potential antibacterial cavity disinfectant in adhesive dentistry. Experimental QAS can effectively eliminate caries-forming bacteria, when used inside a prepared cavity, and can definitely overcome problems associated with present available cavity disinfectants.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links