Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Loh ZW, Mohd Zaid MH, Matori KA, Kechik MMA, Fen YW, Mayzan MZH, et al.
    J Mech Behav Biomed Mater, 2023 Jul;143:105889.
    PMID: 37150138 DOI: 10.1016/j.jmbbm.2023.105889
    This work investigates the role of sintering temperature on bioactive glass-ceramics derived from the new composition CaO-P2O5-Na2O-B2O3-SiO2 glass system. The sintering behaviour of the samples' physical, structural, and mechanical properties is highlighted in this study. The experimental results indicated that the sintering process improved the crystallization and hardness of the final product. Results from XRD and FTIR showed the existence of carbonate apatite, pseudo-wollastonite, and wollastonite phases. From the results, the bioglass-ceramics sintered at 700 °C obtained the highest densification and optimum mechanical results. It had the value of 5.34 ± 0.21 GPa regarding microhardness and 2.99 ± 0.24 MPa m1/2 concerning fracture toughness, which falls in the range of the human enamel. Also, the sintered samples maintained their bioactivity and biodegradability after being tested in the PBS medium. The bioactivity does not affect but slows down the apatite formation rate. Overall results promoted the novel bioglass-ceramics as a candidate material for dental application.
  2. Eddin FBK, Fen YW, Liew JYC, Daniyal WMEMM
    Biosensors (Basel), 2022 Dec 03;12(12).
    PMID: 36551091 DOI: 10.3390/bios12121124
    Surface plasmonic sensors have received considerable attention, found extensive applications, and outperformed conventional optical sensors. In this work, biopolymer chitosan (CS) was used to prepare the bilayer structure (CS/Au) of a plasmonic refractive index sensor for dopamine (DA) detection. The sensing characteristics of the developed plasmonic sensor were evaluated. Increasing DA concentrations significantly shifted the SPR dips. The sensor exhibited stability and a refractive index sensitivity of 8.850°/RIU in the linear range 0.1 nM to 1 µM with a detection limit of 0.007 nM and affinity constant of 1.383 × 108 M-1. The refractive index and thickness of the CS/Au structure were measured simultaneously by fitting the obtained experimental findings to theoretical data based on Fresnel equations. The fitting yielded the refractive index values n (1.5350 ± 0.0001) and k (0.0150 ± 0.0001) for the CS layer contacting 0.1 nM of DA, and the thickness, d was (15.00 ± 0.01) nm. Then, both n and d values increased by increasing DA concentrations. In addition, the changes in the FTIR spectrum and the variations in sensor surface roughness and structure obtained by AFM analysis confirmed DA adsorption on the sensing layer. Based on these observations, CS/Au bilayer has enhanced the performance of this plasmonic sensor, which showed promising importance as a simple, low-cost, and reliable platform for DA sensing.
  3. Fauzi NIM, Fen YW, Eddin FBK, Daniyal WMEMM
    Nanomaterials (Basel), 2022 Nov 21;12(22).
    PMID: 36432389 DOI: 10.3390/nano12224105
    In this study, graphene quantum dots (GQDs) and polyvinyl alcohol (PVA) composite was prepared and then coated on the surface of gold thin film via the spin coating technique. Subsequently, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and ultraviolet-visible spectroscopy (UV-Vis) were adopted to understand the structure, surface morphology, and optical properties of the prepared samples. The FT-IR spectral analysis revealed important bands, such as O-H stretching, C=O stretching, C-H stretching, and O=C=O stretching vibrations. The surface roughness of the GQDs-PVA composite thin film was found to be increased after exposure to carbaryl. On the other hand, the optical absorbance of the GQDs-PVA thin film was obtained and further analysis was conducted, revealing a band gap Eg value of 4.090 eV. The sensing potential of the thin film was analyzed using surface plasmon resonance (SPR) spectroscopy. The findings demonstrated that the developed sensor's lowest detection limit for carbaryl was 0.001 ppb, which was lower than that previously reported, i.e., 0.007 ppb. Moreover, other sensing performance parameters, such as full width at half maximum, detection accuracy, and signal-to-noise ratio, were also investigated to evaluate the sensor's efficiency.
  4. Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WMEMM
    PMID: 34333400 DOI: 10.1016/j.saa.2021.120202
    Due to the crucial role of dopamine (DA) in health and peripheral nervous systems, it is particularly important to develop an efficient and accurate sensor to monitor and determine DA concentrations for diagnostic purposes and diseases prevention. Up to now, using surface plasmon resonance (SPR) sensors in DA determination is very limited and its application still at the primary stage. In this work, a simple and ultra-sensitive SPR sensor was constructed for DA detection by preparation of chitosan- graphene quantum dots (CS-GQDs) thin film as the sensing layer. Other SPR measurements were conducted using different sensing layers; GQDs, CS for comparison. The proposed thin films were prepared by spin coating technique. The developed CS-GQDs thin film-based SPR sensor was successfully tested in DA concentration range from 0 fM to 1 pM. The designed SPR sensor showed outstanding performance in detecting DA sensitively (S = 0.011°/fM, R2 = 0.8174) with low detection limit of 1.0 fM has been achieved for the first time. The increased angular shift of SPR dip, narrow full width half maximum of the SPR curves, excellent signal-to-noise ratio and figure of merit, and a binding affinity constant (KA) of 2.962 PM-1 demonstrated the potential of this sensor to detect DA with high accuracy. Overall, it was concluded that the proposed sensor would serve as a valuable tool in clinical diagnostic for the serious neurological disorders. This in turns has a significant socio-economic impact.
  5. Fauzi NIM, Fen YW, Omar NAS, Hashim HS
    Sensors (Basel), 2021 Jun 03;21(11).
    PMID: 34204853 DOI: 10.3390/s21113856
    Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
  6. Anuar MF, Fen YW, Azizan MZ, Rahmat F, Mohd Zaid MH, Khaidir REM, et al.
    Materials (Basel), 2021 Feb 28;14(5).
    PMID: 33670923 DOI: 10.3390/ma14051141
    Arecanut husk (AH) was selected as a material for silica replacement in the synthesis process of glass-ceramics zinc silicate and also the fact that it has no traditional use and often being dumped and results in environmental issues. The process of pyrolysis was carried out at temperature 700 °C and above based on thermogravimetric analysis to produce arecanut husk ash (AHA). The average purity of the silica content in AHA ranged from 29.17% to 45.43%. Furthermore, zinc oxide was introduced to AHA and zinc silicate started to form at sintering temperature 700 °C and showed increased diffraction intensity upon higher sintering temperature of 600 °C to 1000 °C based on X-ray diffraction (XRD) analysis. The grain sizes of the zinc silicate increased from 1011 nm to 3518 nm based on the morphological studies carried out by field emission scanning electron microscopy (FESEM). In addition, the optical band gap of the sample was measured to be in the range from 2.410 eV to 2.697 eV after sintering temperature. From the data, it is believed that a cleaner production of low-cost zinc silicate can be achieved by using arecanut husk and have the potential to be used as phosphors materials.
  7. Omar NAS, Fen YW, Ramli I, Sadrolhosseini AR, Abdullah J, Yusof NA, et al.
    Polymers (Basel), 2021 Feb 28;13(5).
    PMID: 33671059 DOI: 10.3390/polym13050762
    This paper proposes a novel idea to enhance the sensitivity and selectivity of surface plasmon resonance (SPR) optical sensor for detection of dengue virus type-2 envelope proteins (DENV-2 E-proteins) using polyamidoamine (PAMAM) dendrimer biopolymer-based nanocomposite thin film. For this purpose, two ranges of DENV-2 E-protein concentrations, i.e., 0.000008-0.0001 nM and 0.00008-0.005 nM were evaluated, and the lowest detectable concentration was achieved at 0.00008 nM. The incorporation of PAMAM dendrimer-based nanocomposite thin film with an SPR sensor exhibited a significant increase in sensitivity and binding affinity to a lower range DENV-2 E-protein concentrations. Moreover, the proposed sensor displayed good selectivity towards DENV-2 E-proteins and have an average recovery of 80-120%. The findings of this study demonstrated that PAMAM dendrimer-based nanocomposite thin film combined with SPR sensor is a promising diagnostic tool for sensitive and selective detection of DENV-2 E-proteins.
  8. Rahmat F, Fen YW, Anuar MF, Omar NAS, Zaid MHM, Matori KA, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670482 DOI: 10.3390/molecules26041061
    In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.
  9. Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, et al.
    Polymers (Basel), 2021 Feb 02;13(3).
    PMID: 33540931 DOI: 10.3390/polym13030478
    In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan-graphene oxide (chitosan-GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR-chitosan-GO thin film, while for CdS QD-chitosan-GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian-Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan-GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR-chitosan-GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.
  10. Usman F, Dennis JO, Mkawi EM, Al-Hadeethi Y, Meriaudeau F, Fen YW, et al.
    Polymers (Basel), 2020 Nov 04;12(11).
    PMID: 33158093 DOI: 10.3390/polym12112586
    To non-invasively monitor and screen for diabetes in patients, there is need to detect low concentration of acetone vapor in the range from 1.8 ppm to 5 ppm, which is the concentration range of acetone vapor in diabetic patients. This work presents an investigation for the utilization of chitosan-polyethylene glycol (PEG)-based surface plasmon resonance (SPR) sensor in the detection of trace concentration acetone vapor in the range of breath acetone in diabetic subjects. The structure, morphology, and elemental composition of the chitosan-PEG sensing layer were characterized using FTIR, UV-VIS, FESEM, EDX, AFM, and XPS methods. Response testing was conducted using low concentration of acetone vapor in the range of 0.5 ppm to 5 ppm using SPR technique. All the measurements were conducted at room temperature and 50 mL/min gas flow rate. The sensor showed good sensitivity, linearity, repeatability, reversibility, stability, and high affinity toward acetone vapor. The sensor also showed better selectivity to acetone compared to methanol, ethanol, and propanol vapors. More importantly, the lowest detection limit (LOD) of about 0.96 ppb confirmed the applicability of the sensor for the non-invasive monitoring and screening of diabetes.
  11. Usman F, Dennis JO, Meriaudeau F, Ahmed AY, Seong KC, Fen YW, et al.
    Molecules, 2020 Sep 25;25(19).
    PMID: 32992942 DOI: 10.3390/molecules25194414
    The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant values were extracted from the absorbance spectra of thin layers of the respective samples. The potential utilization of the materials as the active sensing materials of surface plasmon resonance biosensors has also been assessed in terms of the estimated value of the penetration depth through a dielectric medium. The results show a reasonable dependence of the optical constant parameters on the solvent type. Higher real part refractive index (n) and real part complex dielectric permittivity (ε') values were observed for the samples prepared using PTSA solution, while higher optical conductivity values were observed for the NMP-based samples due to their relatively higher imaginary part refractive index (k) and imaginary part complex dielectric permittivity (ε″) values. In addition, NMP-based samples show improvement in terms of the penetration depth through a dielectric medium by around 9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for the PANI, PANI-chitosan, PANI-RGO and the ternary composites, respectively. Based on these, it is concluded that preparation of these materials using different dispersion solvents could produce materials of different optical properties. Thus, the variation of the dispersion solvent will allow the flexible utilization of the PANI and the composites for diverse applications.
  12. Kamal Eddin FB, Fen YW
    Molecules, 2020 Jun 15;25(12).
    PMID: 32549390 DOI: 10.3390/molecules25122769
    For a healthy life, the human biological system should work in order. Scheduled lifestyle and lack of nutrients usually lead to fluctuations in the biological entities levels such as neurotransmitters (NTs), proteins, and hormones, which in turns put the human health in risk. Dopamine (DA) is an extremely important catecholamine NT distributed in the central nervous system. Its level in the body controls the function of human metabolism, central nervous, renal, hormonal, and cardiovascular systems. It is closely related to the major domains of human cognition, feeling, and human desires, as well as learning. Several neurological disorders such as schizophrenia and Parkinson's disease are related to the extreme abnormalities in DA levels. Therefore, the development of an accurate, effective, and highly sensitive method for rapid determination of DA concentrations is desired. Up to now, different methods have been reported for DA detection such as electrochemical strategies, high-performance liquid chromatography, colorimetry, and capillary electrophoresis mass spectrometry. However, most of them have some limitations. Surface plasmon resonance (SPR) spectroscopy was widely used in biosensing. However, its use to detect NTs is still growing and has fascinated impressive attention of the scientific community. The focus in this concise review paper will be on the principle of SPR sensors and its operation mechanism, the factors that affect the sensor performance. The efficiency of SPR biosensors to detect several clinically related analytes will be mentioned. DA functions in the human body will be explained. Additionally, this review will cover the incorporation of nanomaterials into SPR biosensors and its potential for DA sensing with mention to its advantages and disadvantages.
  13. Anas NAA, Fen YW, Yusof NA, Omar NAS, Ramdzan NSM, Daniyal WMEMM
    Materials (Basel), 2020 Jun 06;13(11).
    PMID: 32517196 DOI: 10.3390/ma13112591
    The modification of graphene quantum dots (GQDs) may drastically enhance their properties, therefore resulting in various related applications. This paper reported the preparation of novel cetyltrimethylammonium bromide/hydroxylated graphene quantum dots (CTAB/HGQDs) thin film using the spin coating technique. The properties of the thin film were then investigated and studied. The functional groups existing in CTAB/HGQDs thin film were confirmed by the Fourier transform infrared (FTIR) spectroscopy, while the atomic force microscope (AFM) displayed a homogenous surface of the thin film with an increase in surface roughness upon modification. Optical characterizations using UV-Vis absorption spectroscopy revealed a high absorption with an optical band gap of 4.162 eV. Additionally, the photoluminescence (PL) spectra illustrated the maximum emission peak of CTAB/HGQDs thin film at a wavelength of 444 nm. The sensing properties of the as-prepared CTAB/HGQDs thin film were studied using a surface plasmon resonance technique towards the detection of several heavy metal ions (HMIs) (Zn2+, Ni2+, and Fe3+). This technique generated significant results and showed that CTAB/HGQDs thin film has great potential for HMIs detection.
  14. Anuar MF, Fen YW, Zaid MHM, Omar NAS, Khaidir REM
    Materials (Basel), 2020 Jun 04;13(11).
    PMID: 32512704 DOI: 10.3390/ma13112555
    In this work, waste coconut husk ash was used to prepare a ZnO-SiO2 composite. Solid-state technique was used to fabricate the composite due to its producibility, simple procedure as well as lower production cost. At high sintering temperatures ranging from 600 °C to 1000 °C, the X-ray diffraction (XRD) peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity. Furthermore, the formation of broad bands of ZnO4, Si-O-Si, and SiO4 were detected by Fourier transform infrared (FTIR) spectroscopy and the bands became narrower with the increment of sintering temperature. Besides, the morphological image from field emission scanning electron microscopy (FESEM) showed the formation of densely packed grains and smooth surface composite with the increase of sintering temperature. Upon obtaining the absorbance spectrum from Ultraviolet-Visible (UV-Vis) spectroscopy, the optical band gap was calculated to be 4.05 eV at 1000 °C. The correlation between the structural and optical properties of ZnO-SiO2 composite was discussed in detail.
  15. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S
    Molecules, 2020 May 30;25(11).
    PMID: 32486124 DOI: 10.3390/molecules25112548
    Great efforts have been devoted to the invention of environmental sensors as the amount of water pollution has increased in recent decades. Chitosan, cellulose and nanocrystalline cellulose are examples of biopolymers that have been intensively studied due to their potential applications, particularly as sensors. Furthermore, the rapid use of conducting polymer materials as a sensing layer in environmental monitoring has also been developed. Thus, the incorporation of biopolymer and conducting polymer materials with various methods has shown promising potential with sensitively and selectively toward heavy metal ions. In this feature paper, selected recent and updated investigations are reviewed on biopolymer and conducting polymer-based materials in sensors aimed at the detection of heavy metal ions by optical methods. This review intends to provide sufficient evidence of the potential of polymer-based materials as sensing layers, and future outlooks are considered in developing surface plasmon resonance as an excellent and valid sensor for heavy metal ion detection.
  16. Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, et al.
    Sci Rep, 2020 02 11;10(1):2374.
    PMID: 32047209 DOI: 10.1038/s41598-020-59388-3
    In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH2rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM-1 (R2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors.
  17. Daniyal WMEMM, Fen YW, Anas NAA, Omar NAS, Ramdzan NSM, Nakajima H, et al.
    RSC Adv, 2019 Dec 13;9(71):41729-41736.
    PMID: 35541586 DOI: 10.1039/c9ra07368j
    Surface plasmon resonance (SPR) sensors as novel optical sensors for the detection of a variety of analytes have been receiving increasing attention and their sensitivity has become the research hotspot recently. In this study, the sensitivity of an SPR optical sensor was enhanced by modifying a gold thin film with a nanocrystalline cellulose (NCC)-based material for zinc ion (Zn2+) detection that exists in the environment due to industrial processing. By replacing the gold thin film with a novel modified-gold thin film, Zn2+ can be detected from the range of 0 to 10 ppm using SPR. It is believed that the Zn2+ may interact with the negative charge molecules that exist on the modified-gold thin film, and this was confirmed via X-ray photoelectron spectroscopy (XPS). Moreover, this modified-gold-SPR has a high sensitivity of 1.892° ppm-1 up to 0.1 ppm with an enhanced detection of Zn2+ as low as 0.01 ppm. The SPR results also followed the Langmuir isotherm model with a binding affinity of 1.927 × 103 M-1, which further confirmed the sensitivity of the SPR sensor. In addition, using the modified-gold thin film, SPR has a higher affinity towards Zn2+ compared to other metal ions, i.e. Ni2+, Fe2+, Cr2+, Mn2+, and Co2+.
  18. Saad SM, Abdullah J, Rashid SA, Fen YW, Salam F, Yih LH
    Mikrochim Acta, 2019 11 19;186(12):804.
    PMID: 31745737 DOI: 10.1007/s00604-019-3913-8
    A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7. Graphical abstractSchematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.
  19. Anas NAA, Fen YW, Omar NAS, Daniyal WMEMM, Ramdzan NSM, Saleviter S
    Sensors (Basel), 2019 Sep 06;19(18).
    PMID: 31489912 DOI: 10.3390/s19183850
    About 71% of the Earth's surface is covered with water. Human beings, animals, and plants need water in order to survive. Therefore, it is one of the most important substances that exist on Earth. However, most of the water resources nowadays are insufficiently clean, since they are contaminated with toxic metal ions due to the improper disposal of pollutants into water through industrial and agricultural activities. These toxic metal ions need to be detected as fast as possible so that the situation will not become more critical and cause more harm in the future. Since then, numerous sensing methods have been proposed, including chemical and optical sensors that aim to detect these toxic metal ions. All of the researchers compete with each other to build sensors with the lowest limit of detection and high sensitivity and selectivity. Graphene quantum dots (GQDs) have emerged as a highly potential sensing material to incorporate with the developed sensors due to the advantages of GQDs. Several recent studies showed that GQDs, functionalized GQDs, and their composites were able to enhance the optical detection of metal ions. The aim of this paper is to review the existing, latest, and updated studies on optical sensing applications of GQDs-based materials toward toxic metal ions and future developments of an excellent GQDs-based SPR sensor as an alternative toxic metal ion sensor.
  20. Omar NAS, Fen YW, Saleviter S, Daniyal WMEMM, Anas NAA, Ramdzan NSM, et al.
    Materials (Basel), 2019 Jun 14;12(12).
    PMID: 31207960 DOI: 10.3390/ma12121928
    The emergence of unintentional poisoning and uncontrolled vector diseases have contributed to sensor technologies development, leading to the more effective detection of diseases. In this study, we present the combination of graphene-based material with surface plasmon resonance technique. Two different graphene-based material sensor chips were prepared for rapid and quantitative detection of dengue virus (DENV) and cobalt ion (Co2+) as an example of typical metal ions. As the fundamental concept of surface plasmon resonance (SPR) sensor that relies on the refractive index of the sensor chip surface, this research focused on the SPR signal when the DENV and Co2+ interact with the graphene-based material sensor chip. The results demonstrated that the proposed sensor-based graphene layer was able to detect DENV and Co2+ as low as 0.1 pM and 0.1 ppm respectively. Further details in the detection and quantification of analyte were also discussed in terms of sensitivity, affinity, and selectivity of the sensor.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links