METHODS: A prospective cohort study among ALHIV and matched HIV-uninfected controls aged 12-18 years was conducted at 9 sites in Malaysia, Thailand, and Vietnam from July 2013 to March 2017. Participants completed an audio computer-assisted self-interview at weeks 0, 48, 96, and 144. Virologic failure (VF) was defined as ≥1 viral load (VL) measurement >1000 copies/mL. Generalized estimating equations were used to identify predictors for VF.
RESULTS: Of 250 ALHIV and 59 HIV-uninfected controls, 58% were Thai and 51% females. The median age was 14 years at enrollment; 93% of ALHIV were perinatally infected. At week 144, 66% of ALHIV were orphans vs. 28% of controls (P < 0.01); similar proportions of ALHIV and controls drank alcohol (58% vs. 65%), used inhalants (1% vs. 2%), had been sexually active (31% vs. 21%), and consistently used condoms (42% vs. 44%). Of the 73% of ALHIV with week 144 VL testing, median log VL was 1.60 (interquartile range 1.30-1.70) and 19% had VF. Over 70% of ALHIV had not disclosed their HIV status. Self-reported adherence ≥95% was 60% at week 144. Smoking cigarettes, >1 sexual partner, and living with nonparent relatives, a partner or alone, were associated with VF at any time.
CONCLUSIONS: The subset of ALHIV with poorer adherence and VF require comprehensive interventions that address sexual risk, substance use, and HIV-status disclosure.
METHODS: CLHIV aged <18 years, who were on first-line cART for ≥12 months, and had virological suppression (two consecutive plasma viral load [pVL] <50 copies/mL) were included. Those who started treatment with mono/dual antiretroviral therapy, had a history of treatment interruption >14 days, or received treatment and care at sites with a pVL lower limit of detection >50 copies/mL were excluded. LLV was defined as a pVL 50 to 1000 copies/mL, and VF as a single pVL >1000 copies/mL. Baseline was the time of the second pVL
METHODS: We used Cox regression to analyze data of a cohort of Asian children.
RESULTS: A total of 2608 children were included; median age at cART was 5.7 years. Time-updated weight for age z score < -3 was associated with mortality (P < 0.001) independent of CD4% and < -2 was associated with immunological failure (P ≤ 0.03) independent of age at cART.
CONCLUSIONS: Weight monitoring provides useful data to inform clinical management of children on cART in resource-limited settings.
METHODS: Data collected 2001 to 2016 from PHIVA 10-19 years of age within a regional Asian cohort were analyzed using competing risk time-to-event and Poisson regression analyses to describe the nature and incidence of morbidity events and hospitalizations and identify factors associated with disease-related, treatment-related and overall morbidity. Morbidity was defined according to World Health Organization clinical staging criteria and U.S. National Institutes of Health Division of AIDS criteria.
RESULTS: A total 3,448 PHIVA contributed 17,778 person-years. Median age at HIV diagnosis was 5.5 years, and ART initiation was 6.9 years. There were 2,562 morbidity events and 307 hospitalizations. Cumulative incidence for any morbidity was 51.7%, and hospitalization was 10.0%. Early adolescence was dominated by disease-related infectious morbidity, with a trend toward noninfectious and treatment-related morbidity in later adolescence. Higher overall morbidity rates were associated with a CD4 count <350 cells/µL, HIV viral load ≥10,000 copies/mL and experiencing prior morbidity at age <10 years. Lower overall morbidity rates were found for those 15-19 years of age compared with 10-14 years and those who initiated ART at age 5-9 years compared with <5 or ≥10 years.
CONCLUSIONS: Half of our PHIVA cohort experienced a morbidity event, with a trend from disease-related infectious events to treatment-related and noninfectious events as PHIVA age. ART initiation to prevent immune system damage, optimize virologic control and minimize childhood morbidity are key to limiting adolescent morbidity.
METHODS: Perinatally HIV-infected Asian adolescents (10-19 years) with documented virologic suppression (two consecutive viral loads [VLs] <400 copies/mL ≥6 months apart) were included. Baseline was the date of the first VL <400 copies/mL at age ≥10 years or the 10th birthday for those with prior suppression. Cox proportional hazards models were used to identify predictors of postsuppression VR (VL >1,000 copies/mL).
RESULTS: Of 1,379 eligible adolescents, 47% were males. At baseline, 22% were receiving protease inhibitor-containing regimens; median CD4 cell count (interquartile range [IQR]) was 685 (448-937) cells/mm3; 2% had preadolescent virologic failure (VF) before subsequent suppression. During adolescence, 180 individuals (13%) experienced postsuppression VR at a rate of 3.4 (95% confidence interval: 2.9-3.9) per 100 person-years, which was consistent over time. Median time to VR during adolescence (IQR) was 3.3 (2.1-4.8) years. Wasting (weight-for-age z-score
DESIGN: Ongoing observational database collating clinical data on HIV-infected children and adolescents in Asia.
METHODS: Data from 2001 to 2016 relating to adolescents (10-19 years) with perinatal HIV infection were analysed to describe characteristics at adolescent entry and transition and combination antiretroviral therapy (cART) regimens across adolescence. A competing risk regression analysis was used to determine characteristics at adolescent entry associated with mortality. Outcomes at transition were compared on the basis of age at cART initiation.
RESULTS: Of 3448 PHIVA, 644 had reached transition. Median age at HIV diagnosis was 5.5 years, cART initiation 7.2 years and transition 17.9 years. At adolescent entry, 35.0% had CD4+ cell count less than 500 cells/μl and 51.1% had experienced a WHO stage III/IV clinical event. At transition, 38.9% had CD4+ cell count less than 500 copies/ml, and 53.4% had experienced a WHO stage III/IV clinical event. Mortality rate was 0.71 per 100 person-years, with HIV RNA ≥1000 copies/ml, CD4+ cell count less than 500 cells/μl, height-for-age or weight-for-age z-score less than -2, history of a WHO stage III/IV clinical event or hospitalization and at least second cART associated with mortality. For transitioning PHIVA, those who commenced cART age less than 5 years had better virologic and immunologic outcomes, though were more likely to be on at least second cART.
CONCLUSION: Delayed HIV diagnosis and cART initiation resulted in considerable morbidity and poor immune status by adolescent entry. Durable first-line cART regimens to optimize disease control are key to minimizing mortality. Early cART initiation provides the best virologic and immunologic outcomes at transition.
METHODS: A multisite cross-sectional study was conducted in HIV-infected patients currently <25 years old receiving antiretroviral treatment (ART) who had HBV surface antigen (HBsAg), or HBV surface antibody (anti-HBs) or HBV core antibody (anti-HBc) tested during 2012-2013. HBV coinfection was defined as having either a positive HBsAg test or being anti-HBc positive and anti-HBs negative, reflective of past HBV infection. HBV seroprotection was defined as having a positive anti-HBs test.
RESULTS: A total of 3380 patients from 6 countries (Vietnam, Thailand, Cambodia, Malaysia, Indonesia and India) were included. The current median (interquartile range) age was 11.2 (7.8-15.1) years. Of the 2755 patients (81.5%) with HBsAg testing, 130 (4.7%) were positive. Of 1558 (46%) with anti-HBc testing, 77 (4.9%) were positive. Thirteen of 1037 patients with all 3 tests were anti-HBc positive and HBsAg and anti-HBs negative. One child was positive for anti-HBc and negative for anti-HBs but did not have HBsAg tested. The prevalence of HBV coinfection was 144/2759 (5.2%) (95% confidence interval: 4.4-6.1). Of 1093 patients (32%) with anti-HBs testing, 257 (23.5%; confidence interval: 21.0-26.0) had positive tests representing HBV seroprotection.
CONCLUSIONS: The estimated prevalence of HBV coinfection in this cohort of Asian HIV-infected children and adolescents on ART was 5.2%. The majority of children and adolescents tested in this cohort (76.5%) did not have protective HBV antibody. The finding supports HBV screening of HIV-infected children and adolescents to guide revaccination, the use of ART with anti-HBV activity and future monitoring.
METHODS: Data on children with perinatally acquired HIV aged <18 years on first-line, non-nucleoside reverse transcriptase inhibitor-based cART with viral suppression (two consecutive pVL <400 copies/mL over a six-month period) were included from a regional cohort study; those exposed to prior mono- or dual antiretroviral treatment were excluded. Frequency of pVL monitoring was determined at the site-level based on the median rate of pVL measurement: annual 0.75 to 1.5, and semi-annual >1.5 tests/patient/year. Treatment failure was defined as virologic failure (two consecutive pVL >1000 copies/mL), change of antiretroviral drug class, or death. Baseline was the date of the second consecutive pVL <400 copies/mL. Competing risk regression models were used to identify predictors of treatment failure.
RESULTS: During January 2008 to March 2015, there were 1220 eligible children from 10 sites that performed at least annual pVL monitoring, 1042 (85%) and 178 (15%) were from sites performing annual (n = 6) and semi-annual pVL monitoring (n = 4) respectively. Pre-cART, 675 children (55%) had World Health Organization clinical stage 3 or 4, the median nadir CD4 percentage was 9%, and the median pVL was 5.2 log10 copies/mL. At baseline, the median age was 9.2 years, 64% were on nevirapine-based regimens, the median cART duration was 1.6 years, and the median CD4 percentage was 26%. Over the follow-up period, 258 (25%) CLWH with annual and 40 (23%) with semi-annual pVL monitoring developed treatment failure, corresponding to incidence rates of 5.4 (95% CI: 4.8 to 6.1) and 4.3 (95% CI: 3.1 to 5.8) per 100 patient-years of follow-up respectively (p = 0.27). In multivariable analyses, the frequency of pVL monitoring was not associated with treatment failure (adjusted hazard ratio: 1.12; 95% CI: 0.80 to 1.59).
CONCLUSIONS: Annual compared to semi-annual pVL monitoring was not associated with an increased risk of treatment failure in our cohort of virally suppressed children with perinatally acquired HIV on first-line NNRTI-based cART.
SETTING: An Asian cohort in 16 pediatric HIV services across 6 countries.
METHODS: From 2005 to 2014, patients younger than 20 years who achieved virologic suppression and had subsequent viral load testing were included. Early virologic failure was defined as a HIV RNA ≥1000 copies per milliliter within 12 months of virologic suppression, and late virologic as a HIV RNA ≥1000 copies per milliliter after 12 months following virologic suppression. Characteristics at combination antiretroviral therapy initiation and virologic suppression were described, and a competing risk time-to-event analysis was used to determine cumulative incidence of virologic failure and factors at virologic suppression associated with early and late virologic failure.
RESULTS: Of 1105 included in the analysis, 182 (17.9%) experienced virologic failure. The median age at virologic suppression was 6.9 years, and the median time to virologic failure was 24.6 months after virologic suppression. The incidence rate for a first virologic failure event was 3.3 per 100 person-years. Factors at virologic suppression associated with late virologic failure included older age, mostly rural clinic setting, tuberculosis, protease inhibitor-based regimens, and early virologic failure. No risk factors were identified for early virologic failure.
CONCLUSIONS: Around 1 in 5 experienced virologic failure in our cohort after achieving virologic suppression. Targeted interventions to manage complex treatment scenarios, including adolescents, tuberculosis coinfection, and those with poor virologic control are required.
METHODS: Regional Asian data (2001-2016) were analyzed to describe PHIVA who experienced ≥2 weeks of lamivudine or emtricitabine monotherapy or treatment interruption and trends in CD4 count and HIV viral load during and after episodes. Survival analyses were used for World Health Organization (WHO) stage III/IV clinical and immunologic event-free survival during monotherapy or treatment interruption, and a Poisson regression to determine factors associated with monotherapy or treatment interruption.
RESULTS: Of 3,448 PHIVA, 84 (2.4%) experienced 94 monotherapy episodes, and 147 (4.3%) experienced 174 treatment interruptions. Monotherapy was associated with older age, HIV RNA >400 copies/mL, younger age at ART initiation, and exposure to ≥2 combination ART regimens. Treatment interruption was associated with CD4 count <350 cells/μL, HIV RNA ≥1,000 copies/mL, ART adverse event, and commencing ART age ≥10 years compared with age <3 years. WHO clinical stage III/IV 1-year event-free survival was 96% and 85% for monotherapy and treatment interruption cohorts, respectively. WHO immunologic stage III/IV 1-year event-free survival was 52% for both cohorts. Those who experienced monotherapy or treatment interruption for more than 6 months had worse immunologic and virologic outcomes.
CONCLUSIONS: Until challenges of treatment adherence, engagement in care, and combination ART durability/tolerability are met, monotherapy and treatment interruption will lead to poor long-term outcomes.
METHODS: Individuals enrolled in the Therapeutics Research, Education, and AIDS Training in Asia Pediatric HIV Observational Database were included if they started ART at ages 1 month-14 years and had both height and weight measurements available at ART initiation (baseline). Generalized estimating equations were used to identify factors associated with change in height-for-age z-score (HAZ), follow-up HAZ ≥ -2, change in weight-for-age z-score (WAZ), and follow-up WAZ ≥ -2.
RESULTS: A total of 3217 children were eligible for analysis. The adjusted mean change in HAZ among cotrimoxazole and non-cotrimoxazole users did not differ significantly over the first 24 months of ART. In children who were stunted (HAZ < -2) at baseline, cotrimoxazole use was not associated with a follow-up HAZ ≥ -2. The adjusted mean change in WAZ among children with a baseline CD4 percentage (CD4%) >25% became significantly different between cotrimoxazole and non-cotrimoxazole users after 6 months of ART and remained significant after 24 months (overall P < .01). Similar changes in WAZ were observed in those with a baseline CD4% between 10% and 24% (overall P < .01). Cotrimoxazole use was not associated with a significant difference in follow-up WAZ in children with a baseline CD4% <10%. In those underweight (WAZ < -2) at baseline, cotrimoxazole use was associated with a follow-up WAZ ≥ -2 (adjusted odds ratio, 1.70 vs not using cotrimoxazole [95% confidence interval, 1.28-2.25], P < .01). This association was driven by children with a baseline CD4% ≥10%.
CONCLUSIONS: Cotrimoxazole use is associated with benefits to WAZ but not HAZ during early ART in Asian children.
SETTING: Asian regional cohort incorporating 16 pediatric HIV services across 6 countries.
METHODS: Data from PHIVA (aged 10-19 years) who received combination antiretroviral therapy 2007-2016 were used to analyze LTFU through (1) an International epidemiology Databases to Evaluate AIDS (IeDEA) method that determined LTFU as >90 days late for an estimated next scheduled appointment without returning to care and (2) the absence of patient-level data for >365 days before the last data transfer from clinic sites. Descriptive analyses and competing-risk survival and regression analyses were used to evaluate LTFU epidemiology and associated factors when analyzed using each method.
RESULTS: Of 3509 included PHIVA, 275 (7.8%) met IeDEA and 149 (4.3%) met 365-day absence LTFU criteria. Cumulative incidence of LTFU was 19.9% and 11.8% using IeDEA and 365-day absence criteria, respectively. Risk factors for LTFU across both criteria included the following: age at combination antiretroviral therapy initiation <5 years compared with age ≥5 years, rural clinic settings compared with urban clinic settings, and high viral loads compared with undetectable viral loads. Age 10-14 years compared with age 15-19 years was another risk factor identified using 365-day absence criteria but not IeDEA LTFU criteria.
CONCLUSIONS: Between 12% and 20% of PHIVA were determined LTFU with treatment fatigue and rural treatment settings consistent risk factors. Better tracking of adolescents is required to provide a definitive understanding of LTFU and optimize evidence-based models of care.