Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH
    PLoS Negl Trop Dis, 2014 Jun;8(6):e2890.
    PMID: 24901441 DOI: 10.1371/journal.pntd.0002890
    BACKGROUND: The optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom's composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra) venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin), following intravenous and intramuscular administration into rabbits.

    PRINCIPAL FINDINGS: The serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h), terminal phase half-life (13.6 h) and systemic bioavailability (41.9%) of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax=2 h and 1 h, respectively). Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m.=81.5%) compared to that of the phospholipase A2 (Fi.m.=68.6%) or cardiotoxin (Fi.m.=45.6%). The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions.

    CONCLUSION/SIGNIFICANCE: Our results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its role as the principal toxin in systemic envenoming.

  2. Yap MK, Fung SY, Tan KY, Tan NH
    Acta Trop, 2014 May;133:15-25.
    PMID: 24508616 DOI: 10.1016/j.actatropica.2014.01.014
    The proteome of Naja sumatrana (Equatorial spitting cobra) venom was investigated by shotgun analysis and a combination of ion-exchange chromatography and reverse phase HPLC. Shotgun analysis revealed the presence of 39 proteins in the venom while the chromatographic approach identified 37 venom proteins. The results indicated that, like other Asiatic cobra venoms, N. sumatrana contains large number of three finger toxins and phospholipases A2, which together constitute 92.1% by weight of venom protein. However, only eight of the toxins can be considered as major venom toxins. These include two phospholipases A2, three neurotoxins (two long neurotoxins and a short neurotoxin) and three cardiotoxins. The eight major toxins have relative abundance of 1.6-27.2% venom proteins and together account for 89.8% (by weight) of total venom protein. Other venom proteins identified include Zn-metalloproteinase-disintegrin, Thaicobrin, CRISP, natriuretic peptide, complement depleting factors, cobra venom factors, venom nerve growth factor and cobra serum albumin. The proteome of N. sumatrana venom is similar to proteome of other Asiatic cobra venoms but differs from that of African spitting cobra venom. Our results confirm that the main toxic action of N. sumatrana venom is neurotoxic but the large amount of cardiotoxins and phospholipases A2 are likely to contribute significantly to the overall pathophysiological action of the venom. The differences in toxin distribution between N. sumatrana venom and African spitting cobra venoms suggest possible differences in the pathophysiological actions of N. sumatrana venom and the African spitting cobra venoms, and explain why antivenom raised against Asiatic cobra venom is not effective against African spitting cobra venoms.
  3. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH
    Basic Clin Pharmacol Toxicol, 2015 Oct;117(4):274-9.
    PMID: 25819552 DOI: 10.1111/bcpt.12398
    The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.
  4. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
  5. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

  6. Yap HY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH
    PLoS One, 2015;10(11):e0143549.
    PMID: 26606395 DOI: 10.1371/journal.pone.0143549
    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.
  7. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2015;12(1):23-31.
    PMID: 25552915 DOI: 10.7150/ijms.10019
    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
  8. Yap HY, Chooi YH, Firdaus-Raih M, Fung SY, Ng ST, Tan CS, et al.
    BMC Genomics, 2014;15:635.
    PMID: 25073817 DOI: 10.1186/1471-2164-15-635
    The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden or Tiger milk mushroom (Polyporales, Basidiomycota) is a valuable folk medicine for indigenous peoples in Southeast Asia. Despite the increasing interest in this ethnobotanical mushroom, very little is known about the molecular and genetic basis of its medicinal and nutraceutical properties.
  9. Yap HY, Aziz AA, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2014;11(6):602-7.
    PMID: 24782649 DOI: 10.7150/ijms.8341
    The Lignosus is a genus of fungi that have useful medicinal properties. In Southeast Asia, three species of Lignosus (locally known collectively as Tiger milk mushrooms) have been reported including L. tigris, L. rhinocerotis, and L. cameronensis. All three have been used as important medicinal mushrooms by the natives of Peninsular Malaysia. In this work, the nutritional composition and antioxidant activities of the wild type and a cultivated strain of L. tigris sclerotial extracts were investigated. The sclerotia are rich in carbohydrates with moderate amount of protein and low fat content. Free radical scavenging activities of L. tigris sclerotial extracts correlate with their phenolic content, which ranges from 6.25 to 45.42 mg GAE/g extract. The FRAP values ranged from 0.002 to 0.041 mmol/min/g extract, while the DPPH(•), ABTS(•+), and superoxide anion (SOA) scavenging activities ranged from 0.18 to 2.53, 0.01 to 0.36, and -4.53 to 10.05 mmol Trolox equivalents/g extract, respectively. L. tigris cultivar shows good prospect to be developed into functional food due to its good nutritional value and potent SOA scavenging activity.
  10. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    J Ethnopharmacol, 2015 Nov 4;174:437-51.
    PMID: 26320692 DOI: 10.1016/j.jep.2015.08.042
    The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has been traditionally used as a complementary and alternative medicine for cancer treatment by the local communities of Southeast Asia. Despite the continuous research interest in its antiproliferative activity, the identity of the bioactive compound(s) responsible has yet to be determined. This study aims to bridge the gap in existing research literature by using proteomics approach for investigation of the nature of the anticancer substance of L. rhinocerotis.
  11. Yap HY, Muria-Gonzalez MJ, Kong BH, Stubbs KA, Tan CS, Ng ST, et al.
    Microb Cell Fact, 2017 Jun 12;16(1):103.
    PMID: 28606152 DOI: 10.1186/s12934-017-0713-x
    BACKGROUND: Genome mining facilitated by heterologous systems is an emerging approach to access the chemical diversity encoded in basidiomycete genomes. In this study, three sesquiterpene synthase genes, GME3634, GME3638, and GME9210, which were highly expressed in the sclerotium of the medicinal mushroom Lignosus rhinocerotis, were cloned and heterologously expressed in a yeast system.

    RESULTS: Metabolite profile analysis of the yeast culture extracts by GC-MS showed the production of several sesquiterpene alcohols (C15H26O), including cadinols and germacrene D-4-ol as major products. Other detected sesquiterpenes include selina-6-en-4-ol, β-elemene, β-cubebene, and cedrene. Two purified major compounds namely (+)-torreyol and α-cadinol synthesised by GME3638 and GME3634 respectively, are stereoisomers and their chemical structures were confirmed by 1H and 13C NMR. Phylogenetic analysis revealed that GME3638 and GME3634 are a pair of orthologues, and are grouped together with terpene synthases that synthesise cadinenes and related sesquiterpenes. (+)-Torreyol and α-cadinol were tested against a panel of human cancer cell lines and the latter was found to exhibit selective potent cytotoxicity in breast adenocarcinoma cells (MCF7) with IC50 value of 3.5 ± 0.58 μg/ml while α-cadinol is less active (IC50 = 18.0 ± 3.27 μg/ml).

    CONCLUSIONS: This demonstrates that yeast-based genome mining, guided by transcriptomics, is a promising approach for uncovering bioactive compounds from medicinal mushrooms.

  12. Yap HY, Tan NH, Ng ST, Tan CS, Fung SY
    Front Pharmacol, 2018;9:103.
    PMID: 29491836 DOI: 10.3389/fphar.2018.00103
    Naturally occurring anti-glycation compounds have drawn much interest in recent years as they show potential in reducing or preventing the risk of chronic complications for diabetic patients. In this study, annotation of the genome-transcriptome data from tiger milk mushroom (Lignosus rhinocerus, syn.Lignosus rhinocerotis) to PlantCyc enzymes database identified transcripts that are related to anti-diabetic properties, and these include genes that are involved in carotenoid and abscisic acid biosynthesis as well as genes that code for glyoxalase I, catalase-peroxidases, and superoxide dismutases. The existence of these genes suggests thatL. rhinocerusmay contain bioactive compound(s) with anti-glycation properties that can be exploited for management of diabetic complications. A medium-molecular-weight (MMW) fraction which was obtained from a combination of cold water extraction and Sephadex®G-50 (fine) gel filtration chromatography ofL. rhinocerussclerotia powder was demonstrated to exhibit potent anti-glycation activity. The fraction specifically inhibited the formation of N𝜀-(carboxymethyl)lysine, pentosidine, and other advanced glycation end-product (AGE) structures in a human serum albumin-glucose system, with an IC50value of 0.001 mg/ml, almost 520 times lower than that of the positive control, aminoguanidine hydrochloride (IC50= 0.52 mg/ml). Its ability to suppress protein glycation may be partly associated with its strong superoxide anion radical scavenging activity (10.16 ± 0.12 mmol TE/g). Our results suggest that the MMW fraction ofL. rhinocerusshows potential to be developed into a potent glycation inhibitor for preventing AGE-mediated diabetic complications.
  13. Yap HY, Ariffeen Rosli MF, Tan SH, Kong BH, Fung SY
    Mycobiology, 2023;51(1):1-15.
    PMID: 36846625 DOI: 10.1080/12298093.2022.2164641
    Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.
  14. Yap ACS, Li X, Yap YHY, Razif MFM, Jamil AHA, Ng ST, et al.
    Int J Med Mushrooms, 2020;22(10):967-977.
    PMID: 33426826 DOI: 10.1615/IntJMedMushrooms.2020036351
    Ophiocordyceps sinensis (=Cordyceps sinensis) has been known for its various medicinal properties, in particular immunomodulatory activities associated with its polysaccharides. In this study, the fruiting body of O. sinensis cultivar OCS02® was investigated for its chemical composition and monosaccharide profile. Cold water extract (CWE) obtained from this fruiting body was fractionated by molecular weight (MW) into high (HMW), medium (MMW), and low (LMW) fractions. Polysaccharides in the extract and fractions were identified as heteroglycans containing mostly glucose and mannose with small amounts of galactose, fucose, arabinose, and xylose. The immunomodulatory potential of these heteroglycans was evaluated by induction of cytokine/chemokine secretion using murine macrophage RAW 264.7. All treatments showed significant modulation of IL-6, IL-9, MIP-2, and TIMP-1, especially for CWE, HMW, and MMW, which might be due to their high ratios of glucose and the presence of protein. Further investigation on the structure-function relationship of these fruiting body polysaccharide fractions is needed to delineate the underlying mechanism of their immunomodulatory effect both in vitro and in vivo.
  15. Tang ELH, Tan NH, Fung SY, Tan CH
    Toxicon, 2019 Aug 22;169:91-102.
    PMID: 31445943 DOI: 10.1016/j.toxicon.2019.08.004
    The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).
  16. Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi MS
    PMID: 24517259 DOI: 10.1186/1472-6882-13-347
    Coriandrum sativum is a popular culinary and medicinal herb of the Apiaceae family. Health promoting properties of this herb have been reported in pharmacognostical, phytochemical and pharmacological studies. However, studies on C. sativum have always focused on the aerial parts of the herb and scientific investigation on the root is limited. The aim of this research was to investigate the antioxidant and anticancer activities of C. sativum root, leaf and stem, including its effect on cancer cell migration, and its protection against DNA damage, with special focus on the roots.
  17. Tang EL, Tan CH, Fung SY, Tan NH
    J Proteomics, 2016 10 04;148:44-56.
    PMID: 27418434 DOI: 10.1016/j.jprot.2016.07.006
    The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom.

    BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.

  18. Tan NH, Fung SY, Sim SM, Marinello E, Guerranti R, Aguiyi JC
    J Ethnopharmacol, 2009 Jun 22;123(2):356-8.
    PMID: 19429384 DOI: 10.1016/j.jep.2009.03.025
    The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite.
  19. Tan NH, Fung SY, Tan KY, Yap MK, Gnanathasan CA, Tan CH
    J Proteomics, 2015 Oct 14;128:403-23.
    PMID: 26342672 DOI: 10.1016/j.jprot.2015.08.017
    The venom proteome (venomics) of the Sri Lankan Daboia russelii was elucidated using 1D SDS PAGE nano-ESI-LCMS/MS shotgun proteomics. A total of 41 different venom proteins belonging to 11 different protein families were identified. The four main protein families are phospholipase A2 (PLA2, 35.0%), snaclec (SCL, 22.4%, mainly platelet aggregation inhibitors), snake venom serine proteinase (SVSP, 16.0%, mainly Factor V activating enzyme) and snake venom metalloproteinase (SVMP, 6.9%, mainly heavy chain of Factor X activating enzyme). Other protein families that account for more than 1% of the venom protein include l-amino acid oxidase (LAAO, 5.2%), Kunitz-type serine proteinase inhibitor (KSPI, 4.6%), venom nerve growth factor (VNGF. 3.5%), 5'-nucleotidase (5'NUC, 3.0%), cysteine-rich secretory protein (CRISP, 2.0%) and phosphodiesterase (PDE, 1.3%). The venom proteome is consistent with the enzymatic and toxic activities of the venom, and it correlates with the clinical manifestations of Sri Lankan D. russelii envenomation which include hemorrhage, coagulopathy, renal failure, neuro-myotoxicity and intravascular hemolysis. The venom exhibited remarkable presypnatic neurotoxicity presumably due to the action of basic PLA2 in high abundance (35.0%). Besides, SCLs, Factor X activating enzymes (SVMPs), SVSPs, and LAAOs are potential hemotoxins (50.5%), contributing to coagulopathy and hemorrhagic syndrome in Sri Lankan D. russelii envenomation.
  20. Tan NH, Fung SY, Yap YH
    PMID: 21983189 DOI: 10.1016/j.cbpb.2011.09.009
    A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen>dog fibrinogen≈human fibrinogen>goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links