Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Ng MJ, Mohamad Razif MF, Kong BH, Yap HY, Ng ST, Tan CS, et al.
    J Ethnopharmacol, 2024 Jun 28;328:118073.
    PMID: 38513780 DOI: 10.1016/j.jep.2024.118073
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities.

    AIM OF STUDY: The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®.

    MATERIALS AND METHODS: Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis.

    RESULTS: Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities.

    CONCLUSION: This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations.

    CLASSIFICATION: Systems biology and omics.

  2. Shaibullah S, Shuhaimi N, Ker DS, Mohd-Sharif N, Ho KL, Teh AH, et al.
    Commun Biol, 2023 Sep 08;6(1):920.
    PMID: 37684342 DOI: 10.1038/s42003-023-05265-4
    Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified βαββαβα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.
  3. Ng MJ, Kong BH, Teoh KH, Yap YH, Ng ST, Tan CS, et al.
    J Ethnopharmacol, 2023 Mar 25;304:115957.
    PMID: 36509254 DOI: 10.1016/j.jep.2022.115957
    ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus (Cooke) Ryvarden (also known as Tiger Milk mushroom, TMM), is a basidiomycete belonging to the Polyporaceae family. It has been documented to be used by traditional Chinese physicians and indigenous people in Southeast Asia to treat a variety of illnesses, such as gastritis, arthritis, and respiratory conditions, as well as to restore patients' physical well-being. TMM has also been used in folk medicine to treat cancer. For example, people from the indigenous Kensiu tribe of northeast Kedah (Malaysia) apply shredded TMM sclerotium mixed with water directly onto breast skin to treat breast cancer, while Chinese practitioners from Hong Kong, China prescribe TMM sclerotium as a treatment for liver cancer. L. rhinocerus has previously been demonstrated to possess selective anti-proliferative properties in vitro, however pre-clinical in vivo research has not yet been conducted.

    AIM OF STUDY: This study aimed to examine the anti-tumor activities of L. rhinocerus TM02®, using two different sample preparations [cold water extract (CWE) and fraction] via various routes of administration (oral and intraperitoneal) on an MCF7-xenograft nude mouse model. This study also investigated the inhibitory effect of TM02® CWE and its fractions against COX-2 in vitro using LPS-induced RAW264.7 macrophages, on the basis of the relationship between COX-2 and metastasis, apoptosis resistance, as well as the proliferation of cancer cells.

    MATERIALS AND METHODS: The first preparation, L. rhinocerus TM02® sclerotium powder (TSP) was dissolved in cold water to obtain the cold water extract (CWE). It was further fractionated based on its molecular weight to obtain the high (HMW), medium (MMW) and low (LMW) molecular weight fractions. The second preparation, known as the TM02® rhinoprolycan fraction (TRF), was obtained by combining the HMW and MMW fractions. TSP was given orally to mimic the daily consumption of a supplement; TRF was administered intraperitoneally to mimic typical tumorous cancer treatment with a rapid and more thorough absorption through the peritoneal cavity. Another experiment was conducted to examine changes in COX-2 activity in LPS-induced RAW264.7 macrophages after a 1-h pre-treatment with CWE, HMW, and MMW.

    RESULTS: Our results revealed that intraperitoneal TRF-injection (90 μg/g BW) for 20 days reduced initial tumor volume by ∼64.3% (n = 5). The percentage of apoptotic cells was marginally higher in TRF-treated mice vs. control, suggesting that induction of apoptosis as one of the factors that led to tumor shrinkage. TSP (500 μg/g BW) oral treatment (n = 5) for 63 days (inclusive of pre-treatment prior to tumor inoculation) effectively inhibited tumor growth. Four of the five tumors totally regressed, demonstrating the effectiveness of TSP ingestion in suppressing tumor growth. Although no significant changes were found in mouse serum cytokines (TNF-α, IL-5, IL-6 and CCL2), some increasing and decreasing trends were observed. This may suggest the immunomodulatory potential of these treatments that can directly or indirectly affect tumor growth. Pre-treatment with CWE, HMW and MMW significantly reduced COX-2 activity in RAW264.7 macrophages upon 24 h LPS-stimulation, suggesting the potential of L. rhinocerus TM02® extract and fractions in regulating M1/M2 polarization.

    CONCLUSION: Based on the findings of our investigation, both the rhinoprolycan fraction and crude sclerotial powder from L. rhinocerus TM02® demonstrated tumor suppressive effects, indicating that they contain substances with strong anticancer potential. The antitumor effects of L. rhinocerus TM02® in our study highlights the potential for further explorations into its mechanism of action and future development as a prophylactic or adjunct therapeutic against tumorous cancer.

  4. Yap HY, Ariffeen Rosli MF, Tan SH, Kong BH, Fung SY
    Mycobiology, 2023;51(1):1-15.
    PMID: 36846625 DOI: 10.1080/12298093.2022.2164641
    Wound care has become increasingly important over the years. Various synthetic products for wound care treatment have been reported to cause toxic side effects and therefore natural products are in significant demand as they have minimal side effects. The presence of bioactive compounds in medicinal mushrooms contributes to various biological activities which assist in the early inflammatory phase, keratinocyte proliferation, and its migration enhancement which are pertinent to wound rehabilitation. Lignosus rhinocerus (tiger milk mushroom) can reduce the inflammation phase in wound healing by fighting off bacterial infection and modulating pro-inflammatory cytokines expression in the early stage to avoid prolonged inflammation and tissue damage. The antibacterial, immunomodulating, and anti-inflammatory activities exhibited by most macrofungi play a key role in enhancing wound healing. Several antibacterial and antifungal compounds sourced from traditional botanicals/products may prevent further complications and reoccurrence of injury to a wounded site. Scientific studies are actively underway to ascertain the potential use of macrofungi as a wound healing agent.
  5. Goh NY, Mohamad Razif MF, Yap YH, Ng CL, Fung SY
    Comput Biol Chem, 2022 Feb;96:107620.
    PMID: 34971900 DOI: 10.1016/j.compbiolchem.2021.107620
    Angiotensin-converting enzyme (ACE) regulates blood pressure and has been implicated in several conditions including lung injury, fibrosis and Alzheimer's disease. Medicinal mushroom Ganordema lucidum (Reishi) cystathionine beta-synthase (GlCBS) was previously reported to possess ACE inhibitory activities. However, the inhibitory mechanism of CBS protein remains unreported. Therefore, this study integrates in silico sequencing, structural and functional based-analysis, protein modelling, molecular docking and binding affinity calculation to elucidate the inhibitory mechanism of GlCBS and Lignosus rhinocerus (Tiger milk mushroom) CBS protein (LrCBS) towards ACE. In silico analysis indicates that CBSs from both mushrooms share high similarities in terms of physical properties, structural properties and domain distribution. Protein-protein docking analysis revealed that both GlCBS and LrCBS potentially modulate the C-terminal domain of ACE (C-ACE) activity via regulation of chloride activation and/or prevention of substrate entry. GICBS and LrCBS were also shown to interact with ACE at the same region that presumably inhibits the function of ACE.
  6. Booi HN, Lee MK, Fung SY, Ng ST, Tan CS, Lim KH, et al.
    Int J Med Mushrooms, 2022;24(10):1-14.
    PMID: 36374826 DOI: 10.1615/IntJMedMushrooms.2022045068
    COVID-19 infection has been a key threat to the public health system globally, with an estimated 248 million cases worldwide. COVID-19 patients are subject to a higher risk of developing chronic respiratory disorders that are closely associated with long-term disability, multi-morbidity, and premature mortality. Although there have been recent advancements in respiratory treatment regimens, there has also been increased interest in the use of medicinal mushrooms in bridging the unaddressed pathways of action within the treatment algorithms. In this review, we provide a collection of medicinal mushrooms that are beneficial in promoting respiratory health and potentially reducing COVID-19 symptoms in patients who are newly diagnosed and those who have recovered. While reviewing the use of immunomodulatory pathways, which have shown promising results in tackling side effects and post-COVID syndromes, we also provide insights into how the antioxidant elements present in medicinal mushrooms help to achieve the same results, especially in the prophylactic and therapeutic management of COVID-19 infection. To date, medicinal mushrooms are regarded as a functional food, which, however, need further quality, safety, and efficacy assessments. These requirements are also highlighted in the present review to promote the future development and application of medicinal mushrooms for better respiratory health.
  7. Chai JY, Sugumar V, Alshanon AF, Wong WF, Fung SY, Looi CY
    Cancers (Basel), 2021 Sep 23;13(19).
    PMID: 34638233 DOI: 10.3390/cancers13194746
    Insight into cancer signaling pathways is vital in the development of new cancer treatments to improve treatment efficacy. A relatively new but essential developmental signaling pathway, namely Hedgehog (Hh), has recently emerged as a major mediator of cancer progression and chemoresistance. The evolutionary conserved Hh signaling pathway requires an in-depth understanding of the paradigm of Hh signaling transduction, which is fundamental to provide the necessary means for the design of novel tools for treating cancer related to aberrant Hh signaling. This review will focus substantially on the canonical Hh signaling and the treatment strategies employed in different studies, with special emphasis on the molecular mechanisms and combination treatment in regard to Hh inhibitors and chemotherapeutics. We discuss our views based on Hh signaling's role in regulating DNA repair machinery, autophagy, tumor microenvironment, drug inactivation, transporters, epithelial-to-mesenchymal transition, and cancer stem cells to promote chemoresistance. The understanding of this Achilles' Heel in cancer may improve the therapeutic outcome for cancer therapy.
  8. Kong BH, Yap CA, Razif MFM, Ng ST, Tan CS, Fung SY
    Food Technol Biotechnol, 2021 Jun;59(2):201-208.
    PMID: 34316281 DOI: 10.17113/ftb.59.02.21.7151
    RESEARCH BACKGROUND: Ophiocordyceps sinensis, a highly valued medicinal fungus, is close to extinction due to overexploitation. Successful cultivation of O. sinensis fruiting body (OCS02®) shows that the cultivar has a promising nutritional value and numerous bioactive compounds. Antioxidant and antiproliferative properties and biologically active proteins of the OCS02® are investigated for possible development into nutraceuticals.

    EXPERIMENTAL APPROACH: The chemical composition of the OCS02® cold water extract was determined, and the antioxidant activities were examined using ferric reducing, DPPH• and O2 •- scavenging assays. Tetrazolium dye (MTT) cytotoxic assay was performed to assess the antiproliferative activity of the extract. Bioactive proteins in the active fraction of the extract were identified using liquid chromatography (LC) and tandem-mass spectrometry (MS/MS).

    RESULTS AND CONCLUSIONS: The OCS02® extract exhibited strong O2 •- scavenging (expressed as Trolox equivalents (18.4±1.1) mol/g) and potent cytotoxic activities against adenocarcinomic human alveolar basal epithelial (A549) cells (IC50=(58.2±6.8) µg/mL). High molecular mass polysaccharides, proteins and protein-polysaccharide complexes could have contributed to the antioxidant and cytotoxic selectivity of the OCS02®. LC-MS/MS analysis identified several potential cytotoxic proteases and an oxalate decarboxylase protein which may exhibit protection effects on kidneys.

    NOVELTY AND SCIENTIFIC CONTRIBUTIONS: The findings demonstrate the potential of OCS02® to be developed into functional food due to its promising superoxide anion radical scavenging capacity, cytotoxic effect and presence of biopharmaceutically active proteins.

  9. Kwan SH, Wan-Ibrahim WI, Juvarajah T, Fung SY, Abdul-Rahman PS
    Electrophoresis, 2021 02;42(3):233-244.
    PMID: 33085102 DOI: 10.1002/elps.202000142
    Milk serves as the sole nutrition for newborns, as well as a medium for the transfer of immunological components from the mother to the baby. This study reveals different glycoprotein profiles obtained from human, bovine, and caprine milk and their potential roles in supporting infant growth. Proteins from these three milk samples are separated and analyzed using two-dimensional gel electrophoresis (2-DE). Glycosylated proteins from all samples are enriched by affinity chromatography using lectins from the seeds of Artocarpus integer before analysis using LC/MS-QTOF. The glycoproteome profiling demonstrates that glycosylated proteins are higher in caprine milk compared to other samples. Analysis using LC/MS-QTOF identified 42 O-glycosylated and 56 N-glycosylated proteins, respectively. Among those identified, human milk has 17 glycoproteins, which are both O- and N-glycosylated, whereas caprine and bovine have 10 and 1, respectively. Only glycoproteins from human milk have shown positive matching to important human biological pathways, such as vesicle-mediated transport, immune system and hemostasis pathways. Human milk remains unique for human babies with the presence of antibodies in the form of immunoglobulins that are lacking in ruminant milk proteomes.
  10. Kong BH, Fung SY
    Int J Med Mushrooms, 2021;23(10):61-68.
    PMID: 34595892 DOI: 10.1615/IntJMedMushrooms.2021040120
    Traditional use of the tiger milk medicinal mushroom, Lignosus rhinocerus, to treat various illnesses has been recorded for > 4 centuries. Successful cultivation of L. rhinocerus using proprietary solid-state fermentation (SSF) technology by LiGNO Biotech has enabled large-scale production of L. rhinocerus sclerotia (termed L. rhinocerus TM02) and further investigations into its medicinal properties. Pharmacological activities of L. rhinocerus TM02, including its antioxidant, anti-inflammatory, anticancer, and immunomodulatory effects and the bioactive components responsible, have been validated by various scientific studies. In this study, we assessed the consistency of the bioactive components in 11 batches of L. rhinocerus TM02 produced over a 9-year period. The different batches of L. rhinocerus TM02 consisted of stable protein, polysaccharide, and glycoprotein contents, and all tested samples were comparable to the wild type. L. rhinocerus TM02 had greater protein, carbohydrate, and glycoprotein contents, which were mostly bioactive compared to another cultivar from a different cultivation technology (TM-UN). Together with previous scientific validations, L. rhinocerus TM02 produced using SSF cultivation is of optimal quality with high consistent bioactive contents, which can be an appropriate indicator for quality validation of the much sought-after medicinal mushroom, L. rhinocerus.
  11. Kong BH, Teoh KH, Tan NH, Tan CS, Ng ST, Fung SY
    PeerJ, 2020;8:e9650.
    PMID: 32832273 DOI: 10.7717/peerj.9650
    Background: Lignosus tigris, a recently discovered species of the unique Lignosus family, has been traditionally used by the indigenous communities in Peninsular Malaysia to treat various ailments and as an alternative medicine for cancer treatment. The L. tigris cultivar sclerotia (Ligno TG-K) was found to contain numerous bioactive compounds with beneficial biomedicinal properties and the sclerotial extract exhibited potent antioxidant activity. However, the anticancer property of the Ligno TG-K including in vitro and in vivo antitumor effects as well as its anticancer active compounds and the mechanisms has yet to be investigated.

    Methods: The cytotoxicity of the Ligno TG-K against human breast (MCF7), prostate (PC3) and lung (A549) adenocarcinoma cell lines was evaluated using MTT cytotoxicity assay. The cytotoxic mechanisms of the active high molecular weight proteins (HMWp) fraction were investigated through detection of caspases activity and apoptotic-related proteins expression by Western blotting. The in vivo antitumor activity of the isolated HMWp was examined using MCF7 mouse xenograft model. Shotgun LC-MS/MS analysis was performed to identify the proteins in the HMWp.

    Results and Discussion: Cold water extract of the sclerotia inhibited proliferation of MCF7, A549 and PC3 cells with IC50 ranged from 28.9 to 95.0 µg/mL. Bioassay guided fractionation of the extract revealed that HMWp exhibited selective cytotoxicity against MCF7 cells via induction of cellular apoptosis by the activation of extrinsic and intrinsic signaling pathways. HMWp activated expression of caspase-8 and -9 enzymes, and pro-apoptotic Bax protein whilst inhibiting expression of tumor survivor protein, Bcl-2. HMWp induced tumor-cell apoptosis and suppressed growth of tumor in MCF-7 xenograft mice. Lectins, serine proteases, RNase Gf29 and a 230NA deoxyribonuclease are the major cytotoxic proteins that accounted for 55.93% of the HMWp.

    Conclusion: The findings from this study provided scientific evidences to support the traditional use of the L. tigris sclerotia for treatment of breast cancer. Several cytotoxic proteins with high abundance have been identified in the HMWp of the sclerotial extract and these proteins have potential to be developed into new anticancer agents or as adjunct cancer therapy.

  12. Yap ACS, Li X, Yap YHY, Razif MFM, Jamil AHA, Ng ST, et al.
    Int J Med Mushrooms, 2020;22(10):967-977.
    PMID: 33426826 DOI: 10.1615/IntJMedMushrooms.2020036351
    Ophiocordyceps sinensis (=Cordyceps sinensis) has been known for its various medicinal properties, in particular immunomodulatory activities associated with its polysaccharides. In this study, the fruiting body of O. sinensis cultivar OCS02® was investigated for its chemical composition and monosaccharide profile. Cold water extract (CWE) obtained from this fruiting body was fractionated by molecular weight (MW) into high (HMW), medium (MMW), and low (LMW) fractions. Polysaccharides in the extract and fractions were identified as heteroglycans containing mostly glucose and mannose with small amounts of galactose, fucose, arabinose, and xylose. The immunomodulatory potential of these heteroglycans was evaluated by induction of cytokine/chemokine secretion using murine macrophage RAW 264.7. All treatments showed significant modulation of IL-6, IL-9, MIP-2, and TIMP-1, especially for CWE, HMW, and MMW, which might be due to their high ratios of glucose and the presence of protein. Further investigation on the structure-function relationship of these fruiting body polysaccharide fractions is needed to delineate the underlying mechanism of their immunomodulatory effect both in vitro and in vivo.
  13. Sum AYC, Li X, Yeng YYH, Razif MFM, Jamil AHA, Ting NS, et al.
    Int J Med Mushrooms, 2020;22(8):803-814.
    PMID: 33389874 DOI: 10.1615/IntJMedMushrooms.2020035658
    Natural compounds found in Lignosus rhinocerus like polysaccharides and polysaccharide-protein complexes have the capabilities to modulate the immune system. It possesses antitumor and anti-inflammatory properties and is commonly used in Southeast Asia and Southern China to alleviate illness. To investigate its immunomodulating properties, composition of polysaccharides and the expression of cytokines/chemokines from L. rhinocerus (TM02®) cultivar treated RAW 264.7 were explored. It was revealed, CWE contains linear polysaccharides with 1,4-linkages and rhinoprolycan fraction (HMW & MMW) possesses 1,4-Glcp and 1,6-Glcp backbone and branched chain (1,3,6-Glcp, 1,4,6-Glcp, 1,3,6-Glcp, 1,2,4,6-Glcp). Cytokines profile showed upregulation from CWE (IL-5: 12.078 ± 1.225), HMW (IL-6: 7.297 ± 0.338; TIMP-1: 3.358 ± 0.200), MMW (IL-5: 15.412 ± 5.823; TIMP-1: 1.747 ± 0.053), and LMW (MIP-2: 3.495 ± 0.416; TIMP-1: 7.573 ± 0.088) and possible involvement of NF-κB and MAPK signaling pathway. Further in vivo studies are needed to fully understand the immunomodulatory effects of TM02®.
  14. Cheong PCH, Yong YS, Fatima A, Ng ST, Tan CS, Kong BH, et al.
    IUBMB Life, 2019 10;71(10):1579-1594.
    PMID: 31190445 DOI: 10.1002/iub.2101
    A lectin gene from the Tiger Milk Mushroom Lignosus rhinocerus TM02® was successfully cloned and expressed via vector pET28a in Escherichia coli BL21(DE3). The recombinant lectin, Rhinocelectin, with a predicted molecular mass of 22.8 kDa, was overexpressed in water-soluble form without signal peptide and purified via native affinity chromatography Ni-NTA agarose. Blast protein analysis indicated the lectin to be homologous to jacalin-related plant lectin. In its native form, Rhinocelectin exists as a homo-tetramer predicted with four chains of identical proteins consisting of 11 beta-sheet structures with only one alpha-helix structure. The antiproliferative activity of the Rhinocelectin against human cancer cell lines was concentration dependent and selective. The IC50 values against triple negative breast cancer cell lines MDA-MB-231 and breast cancer MCF-7 are 36.52 ± 13.55 μg mL-1 and 53.11 ± 22.30 μg mL-1 , respectively. Rhinocelectin is only mildly cytotoxic against the corresponding human nontumorigenic breast cell line 184B5 with IC50 value at 142.19 ± 36.34 μg mL-1 . The IC50 against human lung cancer cell line A549 cells is 46.14 ± 7.42 μg mL-1 while against nontumorigenic lung cell line NL20 is 41.33 ± 7.43 μg mL-1 . The standard anticancer drug, Doxorubicin exhibited IC50 values mostly below 1 μg mL-1 for the cell lines tested. Flow cytometry analysis showed the treated breast cancer cells were arrested at G0/G1 phase and apoptosis induced. Rhinocelectin agglutinated rat and rabbit erythrocytes at a minimal concentration of 3.125 μg mL-1 and 6.250 μg mL-1 , respectively.
  15. Tang ELH, Tan NH, Fung SY, Tan CH
    Toxicon, 2019 Aug 22;169:91-102.
    PMID: 31445943 DOI: 10.1016/j.toxicon.2019.08.004
    The intraspecific geographical venom variations of Calloselasma rhodostoma from Malaysia (CR-M), Indonesia (CR-I), Thailand (CR-T) and Vietnam (CR-V) were investigated through 1D SDS-PAGE and nano-ESI-LCMS/MS. The venom antigenicity, procoagulant activities and neutralization using Thai C. rhodostoma Monovalent Antivenom (CRMAV) were also investigated. SDS-PAGE patterns of the venoms were relatively similar with minor variations. Proteomic analysis revealed that snake venom metalloproteinases (SVMPs, particularly P-I class), serine proteases (SVSPs) and snaclecs dominated the venom protein composition (68.96-81.80%), followed by L-amino acid oxidase (LAAO) and phospholipase A2 (PLA2) (7.37-11.08% and 5.18-13.81%, respectively), corroborating C. rhodostoma envenoming effects (hemorrhage, consumptive coagulopathy, thrombocytopenia and local tissue necrosis). Other proteins of lower abundances (2.82-9.13%) identified include cysteine-rich secretory proteins (CRISP), phospholipase B, phosphodiesterase, nerve growth factor, 5'-nucleotidase, aminopeptidase and hyaluronidase. All four venoms exhibited strong procoagulant effects which were neutralized by CRMAV to different extents. CRMAV immunoreactivity was high toward venoms of CR-M, CR-I and CR-T but relatively low for CR-V venom. Among the venom samples from different locales, CR-V venom proteome has the smallest SVMP composition while SVSP, PLA2 and phosphodiesterase were more abundant in the venom. These variations in C. rhodostoma venom protein composition could partly explain the differences seen in immunoreactivity. (198 words).
  16. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    IUBMB Life, 2019 07;71(7):821-826.
    PMID: 30629799 DOI: 10.1002/iub.2006
    Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.
  17. Juvarajah T, Wan-Ibrahim WI, Ashrafzadeh A, Othman S, Hashim OH, Fung SY, et al.
    Breastfeed Med, 2018 11;13(9):631-637.
    PMID: 30362820 DOI: 10.1089/bfm.2018.0057
    BACKGROUND: Bioactive proteins from milk fat globule membrane (MFGM) play extensive roles in cellular processes and defense mechanisms in infants. The aims of this study were to identify differences in protein compositions in human and caprine MFGM using proteomics and evaluate possible nutritional benefits of caprine milk toward an infant's growth, as an alternative when breastfeeding or human milk administration is not possible or inadequate.

    MATERIALS AND METHODS: Human and caprine MFGM proteins were isolated and analyzed, initially by polyacrylamide gel electrophoresis, and subsequently by quadrupole time-of-flight liquid chromatography-mass spectrometry. This was then followed by database search and gene ontology analysis. In general, this method selectively analyzed the abundantly expressed proteins in milk MFGM.

    RESULTS: Human MFGM contains relatively more abundant bioactive proteins compared with caprine. While a total of 128 abundant proteins were detected in the human MFGM, only 42 were found in that of the caprine. Seven of the bioactive proteins were apparently found to coexist in both human and caprine MFGM.

    RESULTS/DISCUSSION: Among the commonly detected MFGM proteins, lactotransferrin, beta-casein, lipoprotein lipase, fatty acid synthase, and butyrophilin subfamily 1 member A1 were highly expressed in human MFGM. On the other hand, alpha-S1-casein and EGF factor 8 protein, which are also nutritionally beneficial, were found in abundance in caprine MFGM. The large number of human MFGM abundant proteins that were generally lacking in caprine appeared to mainly support human metabolic and developmental processes.

    CONCLUSION: Our data demonstrated superiority of human MFGM by having more than one hundred nutritionally beneficial and abundantly expressed proteins, which are clearly lacking in caprine MFGM. The minor similarity in the abundantly expressed bioactive proteins in caprine MFGM, which was detected further, suggests that it is still nutritionally beneficial, and therefore should be included when caprine milk-based formula is used as an alternative.

  18. Lee MK, Li X, Yap ACS, Cheung PCK, Tan CS, Ng ST, et al.
    Front Pharmacol, 2018;9:461.
    PMID: 29867469 DOI: 10.3389/fphar.2018.00461
    Lignosus rhinocerotis has a long history of use by the indigenous community within East Asia to treat a range of health conditions including asthma and chronic cough. To date, there is limited scientific evidence to support its therapeutic effects in relieving these airways conditions. In this study, we examined the effects of the different molecular weight fractions [high-molecular-weight (HMW), medium-molecular-weight (MMW), and low-molecular-weight (LMW)] obtained from the cold water sclerotial extract (CWE) of L. rhinocerotis on airways patency using airway segments isolated from Sprague Dawley rat in an organ bath set-up. It is demonstrated that the HMW and MMW fractions exhibited higher efficacy in relaxing the pre-contracted airways when compared to the CWE and LMW fraction. In addition, the HMW fraction markedly supressed carbachol-, 5-hydroxytrptamine-, and calcium-induced airway contractions. CWE demonstrated a lower efficacy than the HMW fraction but it also significantly attenuated carbachol- and calcium-induced airway contractions. Results showed that the bronchorelaxation effect of CWE and fractions is mediated via blockade of extracellular Ca2+ influx. The composition analysis revealed the following parts of carbohydrate and proteins, respectively: HMW fraction: 71 and 4%; MMW fraction: 35 and 1%; and LMW fraction: 22 and 0.3%. Our results strongly suggest that the polysaccharide-protein complex or proteins found in the HMW and MMW fractions is likely to contribute to the bronchorelaxation effect of CWE.
  19. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    Int J Med Mushrooms, 2018;20(5):459-469.
    PMID: 29953361 DOI: 10.1615/IntJMedMushrooms.2018026252
    A cultivar of fruiting bodies of Ophiocordyceps sinensis (FBOS; OCS02) was analyzed for nutrients, bioactive compounds, and heavy metal content to showcase its potential as a competitive, sustainable, and safe alternative to wild types and other cultivars. A previous 28-day subacute toxicity study showed that doses up to 1 g · kg-1 did not cause any adverse effects in Sprague-Dawley rats. The OCS02 cultivar contained large amounts of cordycepin, polysaccharides, and essential and semi-essential amino acids (0.66, 482.80, 99.02, and 101.04 g · kg-1, respectively) compared with levels reported in wild types and in cultivated mycelia. β-1,3/1,6-glucan content was considerably high at 342.50 g · kg-1. The potassium level (5.14 g kg-1) tied in well with the low sodium content (0.121 g · kg-1)-6 times lower than amounts in wild types. We found no detectable levels of heavy metals such as lead, arsenic, cadmium, and mercury. The major amino acids found in FBOS (0CS02 cultivar) were arginine, lysine, serine, and threonine at 45.20, 20.30, 18.60, and 18.20 g · kg-1, respectively. The cultivated FBOS (OCS02 cultivar) is a comparable alternative to wild-type and other cultivated strains of O. sinensis. It has potential as a nutraceutical to meet market demand.
  20. Yap HYY, Tan NH, Ng ST, Tan CS, Fung SY
    PeerJ, 2018;6:e4940.
    PMID: 29888137 DOI: 10.7717/peerj.4940
    Background: The highly valued medicinal tiger milk mushroom (also known as Lignosus rhinocerus) has the ability to cure numerous ailments. Its anticancer activities are well explored, and recently a partially purified cytotoxic protein fraction termed F5 from the mushroom's sclerotial cold water extract consisting mainly of fungal serine proteases was found to exhibit potent selective cytotoxicity against a human breast adenocarcinoma cell line (MCF7) with IC50 value of 3.00 μg/ml. However, characterization of its cell death-inducing activity has yet to be established.

    Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.

    Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.

    Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links