Displaying publications 1 - 20 of 175 in total

Abstract:
Sort:
  1. Kumar G, Gan HM, Wengert P, Penix T, Parthasarathy A, Hudson AO, et al.
    Microbiol Resour Announc, 2024 Apr 11;13(4):e0122523.
    PMID: 38470029 DOI: 10.1128/mra.01225-23
    We present the whole-genome sequence of four bacterial endophytes associated with German hardneck garlic cloves (Allium sativum L.). Among them, Agrobacterium fabrum and Pantoea agglomerans are associated with plant protection, while Rahnella perminowiae and Stenotrophomonas lactitubi are pathogens. These data will facilitate the identification of genes to improve garlic.
  2. Gan HY, Gan HM, Savka MA, Triassi AJ, Wheatley MS, Smart LB, et al.
    Genome Announc, 2014;2(3).
    PMID: 24812212 DOI: 10.1128/genomeA.00288-14
    Shrub willow, Salix spp. and hybrids, is an important bioenergy crop. Here we report the whole-genome sequences and annotation of 13 endophytic bacteria from stem tissues of Salix purpurea grown in nature and from commercial cultivars and Salix viminalis × Salix miyabeana grown in bioenergy fields in Geneva, New York.
  3. Gan HM, McGroty SE, Chew TH, Chan KG, Buckley LJ, Savka MA, et al.
    J Bacteriol, 2012 Nov;194(21):5981-2.
    PMID: 23045495 DOI: 10.1128/JB.01469-12
    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.
  4. Hong KW, Thinagaran Da, Gan HM, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6324.
    PMID: 23115161 DOI: 10.1128/JB.01608-12
    Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
  5. Kho CJY, Lau MML, Chung HH, Chew IYY, Gan HM
    Curr Microbiol, 2023 Jun 25;80(8):255.
    PMID: 37356021 DOI: 10.1007/s00284-023-03354-5
    Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.
  6. Gan HM, Parthasarathy A, Henry KR, Savka MA, Thomas BN, Hudson AO
    Microbiol Resour Announc, 2020 Feb 27;9(9).
    PMID: 32107300 DOI: 10.1128/MRA.01468-19
    In this study, we report the isolation, identification, characterization, and whole-genome sequence of the endophyte Pantoea sp. strain RIT388, isolated from Distemonanthus benthamianus, a plant known for its antifungal and antibacterial properties that is commonly used for chewing sticks.
  7. Lai WX, Gan HM, Hudson AO, Savka MA
    Genome Announc, 2016;4(1).
    PMID: 26847900 DOI: 10.1128/genomeA.01695-15
    The whole-genome sequence of a new genospecies of Methylobacterium sp., named GXS13 and isolated from grapevine xylem sap, is reported and demonstrates potential for methylotrophy, cytokinin synthesis, and cell wall modification. In addition, biosynthetic gene clusters were identified for cupriachelin, carotenoid, and acyl-homoserine lactone using the antiSMASH server.
  8. Gan HM, Rajasekaram G, Eng WWH, Kaniappan P, Dhanoa A
    Genome Announc, 2017 Aug 10;5(32).
    PMID: 28798179 DOI: 10.1128/genomeA.00768-17
    We report the whole-genome sequences of two carbapenem-resistant clinical isolates of Klebsiella quasipneumoniae subsp. similipneumoniae obtained from two different patients. Both strains contained three different extended-spectrum β-lactamase genes and showed strikingly high pairwise average nucleotide identity of 99.99% despite being isolated 3 years apart from the same hospital.
  9. Gan HM, Eng WWH, Barton MK, Adams LE, Samsudin NA, Bartl AJ, et al.
    Genome Announc, 2017 Aug 24;5(34).
    PMID: 28839032 DOI: 10.1128/genomeA.00857-17
    We report here the genome sequences of Salmonella enterica subsp. enterica serovar Typhimurium strains TT6675 and TT9097, which we utilize for genetic analyses of giant bacterial viruses. Our analyses identified several genetic variations between the two strains, most significantly confirming strain TT6675 as a serine suppressor and TT9097 as a nonsuppressor.
  10. Gan HY, Gan HM, Tarasco AM, Busairi NI, Barton HA, Hudson AO, et al.
    Genome Announc, 2014;2(6).
    PMID: 25377711 DOI: 10.1128/genomeA.01133-14
    Here, we report the whole-genome sequences and annotation of five oligotrophic bacteria from two sites within the Lechuguilla Cave in the Carlsbad Caverns National Park, NM. Three of the five genomes contain an acyl-homoserine lactone signal synthase ortholog (luxI) that is involved in cell-to-cell communication via quorum sensing.
  11. Gan HM, Penix TS, Wengert PC, Wong NH, Hudson AO, Kumar G, et al.
    Microbiol Resour Announc, 2023 Apr 18;12(4):e0123222.
    PMID: 36920211 DOI: 10.1128/mra.01232-22
    Here, we report the genome assemblies of 11 endophytic bacteria, isolated from poison ivy vine (Toxicodendron radicans). Five species belonging to the genus Pseudomonas, two species of Curtobacterium, one strain of Pantoea agglomerans, and one species from the Bacillus, Cellulomonas, and Enterobacter genera were isolated from the interior tissue of poison ivy.
  12. Tran PN, Tan NE, Lee YP, Gan HM, Polter SJ, Dailey LK, et al.
    Genome Announc, 2015;3(6).
    PMID: 26586879 DOI: 10.1128/genomeA.01319-15
    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.
  13. Gan HM, Thomas BN, Cavanaugh NT, Morales GH, Mayers AN, Savka MA, et al.
    PeerJ, 2017;5:e4030.
    PMID: 29158974 DOI: 10.7717/peerj.4030
    In industry, the yeast Rhodotorula mucilaginosa is commonly used for the production of carotenoids. The production of carotenoids is important because they are used as natural colorants in food and some carotenoids are precursors of retinol (vitamin A). However, the identification and molecular characterization of the carotenoid pathway/s in species belonging to the genus Rhodotorula is scarce due to the lack of genomic information thus potentially impeding effective metabolic engineering of these yeast strains for improved carotenoid production. In this study, we report the isolation, identification, characterization and the whole nuclear genome and mitogenome sequence of the endophyte R. mucilaginosa RIT389 isolated from Distemonanthus benthamianus, a plant known for its anti-fungal and antibacterial properties and commonly used as chewing sticks. The assembled genome of R. mucilaginosa RIT389 is 19 Mbp in length with an estimated genomic heterozygosity of 9.29%. Whole genome phylogeny supports the species designation of strain RIT389 within the genus in addition to supporting the monophyly of the currently sequenced Rhodotorula species. Further, we report for the first time, the recovery of the complete mitochondrial genome of R. mucilaginosa using the genome skimming approach. The assembled mitogenome is at least 7,000 bases larger than that of Rhodotorula taiwanensis which is largely attributed to the presence of large intronic regions containing open reading frames coding for homing endonuclease from the LAGLIDADG and GIY-YIG families. Furthermore, genomic regions containing the key genes for carotenoid production were identified in R. mucilaginosa RIT389, revealing differences in gene synteny that may play a role in the regulation of the biotechnologically important carotenoid synthesis pathways in yeasts.
  14. Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA
    PMID: 25621282 DOI: 10.3389/fcimb.2014.00188
    Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
  15. Austin CM, Tan MH, Croft LJ, Hammer MP, Gan HM
    Genome Biol Evol, 2015 Oct;7(10):2885-95.
    PMID: 26446539 DOI: 10.1093/gbe/evv186
    The Asian arowana (Scleropages formosus) is of commercial importance, conservation concern, and is a representative of one of the oldest lineages of ray-finned fish, the Osteoglossomorpha. To add to genomic knowledge of this species and the evolution of teleosts, the genome of a Malaysian specimen of arowana was sequenced. A draft genome is presented consisting of 42,110 scaffolds with a total size of 708 Mb (2.85% gaps) representing 93.95% of core eukaryotic genes. Using a k-mer-based method, a genome size of 900 Mb was also estimated. We present an update on the phylogenomics of fishes based on a total of 27 species (23 fish species and 4 tetrapods) using 177 orthologous proteins (71,360 amino acid sites), which supports established relationships except that arowana is placed as the sister lineage to all teleost clades (Bayesian posterior probability 1.00, bootstrap replicate 93%), that evolved after the teleost genome duplication event rather than the eels (Elopomorpha). Evolutionary rates are highly heterogeneous across the tree with fishes represented by both slowly and rapidly evolving lineages. A total of 94 putative pigment genes were identified, providing the impetus for development of molecular markers associated with the spectacular colored phenotypes found within this species.
  16. Gan HM, Linton SM, Austin CM
    Mar Genomics, 2019 Jun;45:64-71.
    PMID: 30928201 DOI: 10.1016/j.margen.2019.02.002
    Despite recent advances in sequencing technology, a complete mitogenome assembly is still unavailable for the gecarcinid land crabs that include the iconic Christmas Island red crab (Gecarcoidea natalis) which is known for its high population density, annual mass breeding migration and ecological significance in maintaining rainforest structure. Using sequences generated from Nanopore and Illumina platforms, we assembled the complete mitogenome for G. natalis, the first for the genus and only second for the family Gecarcinidae. Nine Nanopore long reads representing 0.15% of the sequencing output from an overnight MinION Nanopore run were aligned to the mitogenome. Two of them were >10 kb and combined are sufficient to span the entire G. natalis mitogenome. The use of Illumina genome skimming data only resulted in a fragmented assembly that can be attributed to low to zero sequencing coverage in multiple high AT-regions including the mitochondrial protein-coding genes (NAD4 and NAD5), 16S ribosomal rRNA and non-coding control region. Supplementing the mitogenome assembly with previously acquired transcriptome dataset containing high abundance of mitochondrial transcripts improved mitogenome sequence coverage and assembly reliability. We then inferred the phylogeny of the Eubrachyura using Maximum Likelihood and Bayesian approaches, confirming the phylogenetic placement of G. natalis within the family Gecarcinidae based on whole mitogenome alignment. Given the substantial impact of AT-content on mitogenome assembly and the value of complete mitogenomes in phylogenetic and comparative studies, we recommend that future mitogenome sequencing projects consider generating a modest amount of Nanopore long reads to facilitate the closing of problematic and fragmented mitogenome assemblies.
  17. Gan HM, Austin C, Linton S
    Mar Biotechnol (NY), 2018 Oct;20(5):654-665.
    PMID: 29995174 DOI: 10.1007/s10126-018-9836-2
    The Christmas Island red crab, Gecarcoidea natalis, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of G. natalis, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using in silico approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase ("classic cellulase") transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in G. natalis with in silico support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the G. natalis GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.
  18. Froufe E, Gan HM, Lee YP, Carneiro J, Varandas S, Teixeira A, et al.
    PMID: 27158872 DOI: 10.3109/19401736.2015.1074223
    Freshwater mussels of the family Unionidae exhibit a particular form of mitochondria inheritance called double uniparental inheritance (DUI), in which the mitochondria are inherited by both male and female parents. The (M)ale and (F)emale mitogenomes are highly divergent within species. In the present study, we determine and describe the complete M and F mitogenomes of the Endangered freshwater mussel Potomida littoralis (Cuvier, 1798). The complete M and F mitogenomes sequences are 16 451 bp and 15 787 bp in length, respectively. Both F and M have the same gene content: 13 protein-coding genes (PCGs), 22 transfer RNA (trn) and 2 ribosomal RNA (rrn) genes. Bayesian analyses based on the concatenated nucleotide sequences of 12 PCGs and 2 rrn genes of both genomes, including mitogenome sequences available from related species, were performed. Male and Female lineages are monophyletic within the family, but reveal distinct phylogenetic relationships.
  19. Lau MML, Lim LWK, Chung HH, Gan HM
    Data Brief, 2021 Dec;39:107481.
    PMID: 34712757 DOI: 10.1016/j.dib.2021.107481
    The Javan mahseer (Tor tambra) is one of the most valuable freshwater fish found in Tor species. To date, other than mitogenomic data (BioProject: PRJNA422829), genomic and transcriptomic resources for this species are still lacking which is crucial to understand the molecular mechanisms associated with important traits such as growth, immune response, reproduction and sex determination. For the first time, we sequenced the transcriptome from a whole juvenile fish using Illumina NovaSEQ6000 generating raw paired-end reads. De novo transcriptome assembly generated a draft transcriptome (BUSCO5 completeness of 91.2% [Actinopterygii_odb10 database]) consisting of 259,403 putative transcripts with a total and N50 length of 333,881,215 bp and 2283 bp, respectively. A total count of 77,503 non-redundant protein coding sequences were predicted from the transcripts and used for functional annotation. We mapped the predicted proteins to 304 known KEGG pathways with signal transduction cluster having the highest representation followed by immune system and endocrine system. In addition, transcripts exhibiting significant similarity to previously published growth-and immune-related genes were identified which will facilitate future molecular breeding of Tor tambra.
  20. Austin CM, Tan MH, Lee YP, Croft LJ, Meekan MG, Pierce SJ, et al.
    Mitochondrial DNA, 2016;27(1):694-5.
    PMID: 24779605 DOI: 10.3109/19401736.2014.913147
    The complete mitochondrial genome of the parasitic copepod Pandarus rhincodonicus was obtained from a partial genome scan using the HiSeq sequencing system. The Pandarus rhincodonicus mitogenome has 14,480 base pairs (62% A+T content) made up of 12 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a putative 384 bp non-coding AT-rich region. This Pandarus mitogenome sequence is the first for the family Pandaridae, the second for the order Siphonostomatoida and the sixth for the Copepoda.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links