Displaying all 10 publications

  1. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  2. Ullah H, Heyat MBB, Akhtar F, Muaad AY, Ukwuoma CC, Bilal M, et al.
    Diagnostics (Basel), 2022 Dec 28;13(1).
    PMID: 36611379 DOI: 10.3390/diagnostics13010087
    The development of automatic monitoring and diagnosis systems for cardiac patients over the internet has been facilitated by recent advancements in wearable sensor devices from electrocardiographs (ECGs), which need the use of patient-specific approaches. Premature ventricular contraction (PVC) is a common chronic cardiovascular disease that can cause conditions that are potentially fatal. Therefore, for the diagnosis of likely heart failure, precise PVC detection from ECGs is crucial. In the clinical settings, cardiologists typically employ long-term ECGs as a tool to identify PVCs, where a cardiologist must put in a lot of time and effort to appropriately assess the long-term ECGs which is time consuming and cumbersome. By addressing these issues, we have investigated a deep learning method with a pre-trained deep residual network, ResNet-18, to identify PVCs automatically using transfer learning mechanism. Herein, features are extracted by the inner layers of the network automatically compared to hand-crafted feature extraction methods. Transfer learning mechanism handles the difficulties of required large volume of training data for a deep model. The pre-trained model is evaluated on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia and Institute of Cardiological Technics (INCART) datasets. First, we used the Pan-Tompkins algorithm to segment 44,103 normal and 6423 PVC beats, as well as 106,239 normal and 9987 PVC beats from the MIT-BIH Arrhythmia and IN-CART datasets, respectively. The pre-trained model employed the segmented beats as input after being converted into 2D (two-dimensional) images. The method is optimized with the using of weighted random samples, on-the-fly augmentation, Adam optimizer, and call back feature. The results from the proposed method demonstrate the satisfactory findings without the using of any complex pre-processing and feature extraction technique as well as design complexity of model. Using LOSOCV (leave one subject out cross-validation), the received accuracies on MIT-BIH and INCART are 99.93% and 99.77%, respectively, suppressing the state-of-the-art methods for PVC recognition on unseen data. This demonstrates the efficacy and generalizability of the proposed method on the imbalanced datasets. Due to the absence of device-specific (patient-specific) information at the evaluating stage on the target datasets in this study, the method might be used as a general approach to handle the situations in which ECG signals are obtained from different patients utilizing a variety of smart sensor devices.
  3. Gao M, Lin Y, Wang P, Jin Y, Wang Q, Ma H, et al.
    J Hazard Mater, 2021 Sep 05;417:126037.
    PMID: 33992013 DOI: 10.1016/j.jhazmat.2021.126037
    Chinese liquor distillers' grain (CLDG) is an abundant industrial organic waste showing high potential as feedstock for biofuel conversion. In this study, CLDG was used as substrate by microbial community in pit mud to produce medium-chain fatty acids (especially caproate). Simulated and real fermentation were used to evaluate the effect of ethanol and lactic acid being the electronic donors (EDs) during the anaerobic chain elongation (CE). The caproate concentration was achieved at 449 mg COD/g VS, with the corresponding high carbon selectivity at 37.1%. Microbial analysis revealed that the domestication of pit mud increased the abundance of Caproiciproducens (converting lactic acid into caproate) and Lactobacillus (producing lactic acid), leading to enhanced caproate production. The lactic acid conversion facilitated in full utilization of ethanol through CE consumption. The coexistence of EDs benefited the CE system and that this green energy production can be a promising high-performance biofuel donor for sustainable industrial production development.
  4. Gao M, Sun Y, Wang Q, Ma S, Guo X, Zhou L, et al.
    PMID: 34523748 DOI: 10.1002/bab.2254
    Nanomaterial on the sensing area elevates the biomolecular immobilization by its right orientation with a proper alignment, and zeolite is one of the suitable materials. In this research, the zeolite nanoparticles were synthesized using rice hush ash as the basic source and the prepared zeolite by the addition of sodium silicate was utilized to attach antibody as a probe on a gap-fingered dielectrode surface to identify the colon cancer biomarker, "colon cancer-secreted protein-2" (CCSP-2). Field Emission Scanning Electron Microscopy and Field Emission Transmission Electron Microscopy images confirmed the size of the nanoparticle to be ∼15 nm and the occurrence of silica and alumina. Zeolite was modified on the electrode surface through the amine linker, and then anti-CCSP-2 was attached by an aldehyde linker. On this surface, CCSP-2 was detected and attained the detection limit to be 3 nM on the linear regression curve with 3-5 nM of CCSP-2. Estimated by the determination coefficient of y = 2.3952x - 4.4869 and R2 = 9041 with 3δ (n = 3). In addition, control proteins did not produce the notable current response representing the specific sensing of CCSP-2. This research is suitable to identify CCSP-2 at a lower level in the bloodstream under the physiological condition of a colon cancer patient.
  5. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
  6. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
  7. Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, et al.
    Bioresour Technol, 2023 Jan;368:128375.
    PMID: 36414142 DOI: 10.1016/j.biortech.2022.128375
    Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.
  8. Xiang X, Wang Y, Huang G, Huang J, Gao M, Sun M, et al.
    J Steroid Biochem Mol Biol, 2023 Mar;227:106244.
    PMID: 36584773 DOI: 10.1016/j.jsbmb.2022.106244
    OBJECTIVE: 17β-estradiol (17β-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17β-E2-induced autophagy.

    METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated β-galactosidase staining.

    RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17β-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17β-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17β-E2-induced autophagy and suppression of H2O2-induced senescence.

    CONCLUSION: Our findings demonstrated that 17β-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.

  9. Gao M, Qu K, Zhang W, Wang X
    Neuroimmunomodulation, 2021;28(2):90-98.
    PMID: 33774633 DOI: 10.1159/000513297
    INTRODUCTION: Pediatric patients with epilepsy are prone to cognitive impairments during growth and long-term use of most antiepileptic drugs (AED). The affected children do not respond to conventional AED and may require novel drugs to manage the disease. Valproic acid, a first-line drug to treat epilepsy, is associated with serious side effects, which precludes its wider use. Thus, in the present study, we intended to develop novel substituted pyrazoles.

    METHODS: The molecules were tested for anticonvulsive activity in Swiss albino mice via maximal electroshock seizure and subcutaneous pentylenetetrazole assays. The most potent molecule among the class was further assayed for its effect on behavioral and CNS depressant activity. The effect of the most potent compounds was also analyzed on various indices of oxidative stress and inflammation in mice.

    RESULTS: The designed compounds showed significant anticonvulsive activity in mice revealing 7h as the most potent anticonvulsive agent. The most potent anticonvulsant molecule 7h further showed no behavioral alteration and considerable CNS depressant activity. It also reduces the level of oxidative stress and inflammation in the mice.

    CONCLUSION: Our study demonstrated utility of pyrazole derivatives as anticonvulsants against epilepsy.

Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links